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ABSTRAKT

Tato práce popisuje autorovu výzkumnou aktivitu v oblasti adaptivních vari-
ant algoritmu diferenciální evoluce pro optimalizaci jednokriteriálních funkcí
definovaných ve spojitém prostoru. První část této práce popisuje oblast
matematické optimalizace a její rozdělení do jednotlivých podkategorií podle
charakteristik optimalizované funkce. Zároveň je v této části popsán typický
zástupce metaheuristické optimalizace - evoluční výpočetní techniky.
Druhá část této práce se věnuje variantám algoritmu diferenciální evoluce
včetně variant s adaptivními kontrolními parametry. V této části se autor
věnuje i důvodům, proč si vybral algoritmus Success-History based Adaptive
Differential Evolution jako základ své vědecké práce.
V experimentální části práce je navržen nástroj pro analýzu dynamiky pop-
ulace evolučních algoritmů. Ten může být využit jak při tvorbě nových, tak
i pro vyhodnocení vlastností stávajících a aktuálně používaných algoritmů.
Mimo analýzu dynamiky populace obecně se autor zaměřil i na konkrétní
algoritmy založené na diferenciální evoluci. Navrhl dvě úpravy vnitřní dy-
namiky - multi–chaotický framework pro výběr rodičů a adaptace kontrolních
parametrů s využitím vzdálenosti jedinců. Obě techniky jsou zaměřeny na
pomoc s hledáním správné rovnováhy mezi prohledáváním prostoru řešení do
šířky a do hloubky. Na příkladu moderní verze diferenciální evoluce ve vari-
antě jSO je ukázán přínos implementace adaptace kontrolních parametrů s
využitím vzdálenosti jedinců. Takto upravený algoritmus byl nazván DISH
a byl otestován na testovacích sadách spojených s celosvětovým kongresem
evolučních technik - CEC (Congress on Evolutionary Computation). Výsledky
ukazují, že využití nové adaptační strategie je vhodné především pro úlohy,
které optimalizují větší množství vstupních parametrů.
Praktické využití algoritmu DISH je demonstrováno na příkladu hledání opti-
málního rozmístění spaloven odpadu v České republice.
Výše zmíněné výsledky ukazují, že i v rámci jednoduchých změn vnitřní dy-
namiky algoritmu lze dosáhnout lepší výkonnosti. I proto si autor zvolil jako
svůj budoucí výzkumný směr rozvíjení nástroje pro analýzu vnitřní populační
dynamiky metaheuristických algoritmů.



ABSTRACT

This doctoral thesis summary describes the author’s research in the area
of adaptive Differential Evolution variants for small–scale continuous single–
objective optimization. The first part describes the topic of mathematical
optimization and lists various problem domains according to the problem char-
acteristics. It also describes the area of metaheuristic optimization and Evo-
lutionary Computation Techniques.
The Differential Evolution algorithm variants and control parameter adaptivity
are described in the next part of this work and it also provides the justification
of selecting Success–History based Adaptive Differential Evolution algorithm
as a basis for author’s research focus.
A novel population dynamic analysis tool is proposed in the experimental part.
This tool can be used for the development process of new metaheuristic tech-
niques as well as for the analysis of the state-of-the-art methods.
The experimental part also provides the proposal of multi–chaotic framework
for parent selection for the Differential Evolution based algorithms and Dis-
tance based parameter adaptation, which can be implemented into adaptive
variants of Differential Evolution algorithm to improve the balance between
exploration and exploitation. The benefits of using Distance based parameter
adaptation are shown on the improved jSO algorithm - DISH. The performance
of both versions (jSO and DISH) is compared on the basis of Congress on Evo-
lutionary Computation benchmark sets and shows that the DISH variant is
more suitable for optimization problems of a larger scale.
The practical use of the DISH algorithm is demonstrated on the operations
research problem of finding optimal dislocation of waste–to–energy facilities in
the Czech Republic.
Through the above–mentioned results, it can be seen that even simple changes
in algorithms’ inner dynamic can lead to significant improvements. Therefore,
the research area of adaptive metaheuristics for optimization can benefit from
knowledge gained through thorough algorithm analysis, which is the author’s
chosen research direction for the future.



TABLE OF CONTENTS

1 INTRODUCTION ...................................................................................................................................................................................................................................................................................................... 7

1.1 Evolutionary computational techniques in optimization ............................................... 9

2 DISSERTATION GOAL ............................................................................................................................................................................................................................................................. 10

3 DIFFERENTIAL EVOLUTION AND
ADAPTIVITY ........................................................................................................................................................................................................................................................................................................ 11

4 PROPOSED METHODS ....................................................................................................................................................................................................................................................... 12

4.1 Population dynamic analysis .................................................................................................................................................................................................................. 12
4.1.1 Cluster analysis ............................................................................................................................................................................................................................................................. 12
4.1.2 Population diversity ................................................................................................................................................................................................................................... 13

4.2 Multi–chaotic framework for parent selection .............................................................................................................. 15
4.2.1 Chaotic maps as PRNGs ..................................................................................................................................................................................................... 15
4.2.2 Parent selection ............................................................................................................................................................................................................................................................. 16
4.2.3 Results .................................................................................................................................................................................................................................................................................................................... 17

4.3 Distance based parameter adaptation ............................................................................................................................................................ 17
4.3.1 Results .................................................................................................................................................................................................................................................................................................................... 18
4.3.2 Clustering analysis ........................................................................................................................................................................................................................................... 18

4.4 DISH ................................................................................................................................................................................................................................................................................................................................................................. 19
4.4.1 Results .................................................................................................................................................................................................................................................................................................................... 19

4



5 THE CONTRIBUTION TO SCIENCE
AND PRACTICE ................................................................................................................................................................................................................................................................................... 21

5.1 Population dynamic analysis .................................................................................................................................................................................................................. 21
5.2 Distance based parameter adaptation ............................................................................................................................................................ 22
5.3 Practical applications of DISH ....................................................................................................................................................................................................... 22

5.3.1 Sustainable waste–to–energy facility location ............................................................................... 22

6 DISSERTATION GOAL FULFILLMENT ................................................................................................................................... 25

7 CONCLUSION ............................................................................................................................................................................................................................................................................................................................ 26

8 CURRICULUM VITAE ............................................................................................................................................................................................................................................................... 27

REFERENCES ..................................................................................................................................................................................................................................................................................................................... 28

PUBLICATIONS OF THE AUTHOR ........................................................................................................................................................ 34

LIST OF FIGURES ...................................................................................................................................................................................................................................................................................... 35

LIST OF TABLES ............................................................................................................................................................................................................................................................................................... 35

LIST OF ABBREVIATIONS ...................................................................................................................................................................................................................... 36

5



6



1 INTRODUCTION

Mathematical optimization is a scientific research area that deals with search-
ing for the problem parameter values combination that would yield the best
result – objective function value (e.g., minimization of a cost or maximiza-
tion of a profit). Of course, there are multiple subcategories of optimization
tasks that require appropriate methods for their solving. These categories are
divided according to [1] as follows:

• The number of objectives:

– Single–objective optimization – the goal is to optimize one ob-
jective.

– Multi–objective optimization – the goal is to simultaneously
optimize two or three objectives.

– Many–objective optimization – the goal is to simultaneously
optimize more than three objectives.

• The input parameter type:

– Discrete / Combinatorial optimization – optimized parame-
ters have a finite number of possible values.

– Continuous / Real–valued / Numerical optimization – op-
timized parameters are real–valued.

• The computational complexity of the objective function:

– Expensive optimization – it is computationally expensive to eval-
uate the objective function of a single solution.

– Non–expensive optimization – it is computationally inexpensive
to evaluate the objective function of a single solution.

• The search space type:

– Unconstrained optimization – the search space of parameter
values is infinite.

7



– Bound–constrained optimization – the search space is not con-
strained; individual parameters have only upper and lower bounds.

– Constrained optimization – the search space is constrained by
additional equalities or inequalities.

• The scale of the problem (number of optimized parameters /
dimensionality):

– Small-scale optimization – the dimensionality of the problem is
between 1 and 100.

– Large-scale optimization – the dimensionality of the problem is
in hundreds or thousands.

Optimization algorithms are methods for solving optimization problems and
can also be classified into subcategories. One of the main classifications might
be by algorithms stochasticity into two groups - deterministic and stochastic
[2]. Deterministic algorithms follow a rigorous mathematical approach and
work with the mathematical model of the problem to provide the optimal so-
lution. Unfortunately, the most complex tasks are unsolvable by deterministic
optimization algorithms due to the time and computational constraints. Thus,
stochastic optimization algorithms that use randomness in their core are em-
ployed. These algorithms can also be titled metaheuristics. Metaheuristics
treat optimization problems as black boxes - trying to solve optimization tasks
using only the information of an input/output combination and learning from
that. Due to their stochastic nature, metaheuristics do not guarantee a finding
of the global optimum.
Evolutionary Computational Techniques (ECTs) form a particular metaheuris-
tic class based on the principle of natural selection and are described in the
next section.
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1.1 Evolutionary computational techniques in optimiza-
tion

ECTs are part of the soft computing field and are based on the Darwinian
theory of evolution [3]. In this sense, ECTs often work with a population of in-
dividuals. Those individuals are combined via crossover operator (an analogy
with breeding), and the resulting individuals are further mutated via muta-
tion operator (analogous to gene mutation) to provide possibly fitter offspring
for the next generation. This process is applied to the whole population to
provide a new generation of solutions to the given optimization task. Thanks
to this, ECTs can be used to optimize particularly hard optimization tasks
that could not be solved, due to the computational complexity, by traditional
deterministic methods.
One of the problems while using ECTs is a requirement for a control parame-
ter setting. These parameters can significantly impact the algorithm’s perfor-
mance, and therefore their correct setting is essential. One of the latest trends
in ECTs is to address this problem by adapting the algorithm’s behavior (via
adapting control parameter values) to the given optimization task. With the
famous No Free Lunch (NFL) theorem in mind [4], adaptive algorithms try to
overcome the problem of correct parameter setting by incorporating knowledge
of previously successful values of these parameters into the evolution process
in an intelligent way. Thus, the user is no longer obliged to fine–tune these
parameters manually.
The Differential Evolution (DE) algorithm [5] is one of the main representatives
of ECTs and has been thoroughly studied over the last 25 years. Moreover,
its adaptive variants from the last decade show promising results in various
problem domains, and that is why the DE was selected as the author’s re-
search focus. Particularly, the dissertation is focused on the DE algorithm and
its adaptive variants for small–scale continuous single–objective optimization
problems with a possible expansion to the area of large–scale optimization.
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2 DISSERTATION GOAL

The prevailing trend in the metaheuristic optimization seems to be a constant
development of new techniques without proper justification of their need. This
was nicely described by Sörensen in [6]. A similar issue is a vast amount of
new versions of existing successful algorithms. In author’s opinion, the main
problem is not the great volume of variants, but the lack of proper analy-
sis of implemented changes and their influence on the algorithm’s behavior.
Therefore, the goal of this dissertation is to try and contribute to the scien-
tific area of metaheuristic optimization by developing analysis tools which use
datamining techniques to help with understanding the population dynamic of
metaheuristic algorithms. More specifically, how the control parameter adap-
tation in DE–based algorithms influences the population dynamic and whether
this information can be used in the development and testing of new ideas.

Selected methods to achieve the above stated dissertation goal:

• Analysis – current state–of–the–art methods in adaptive DE field will
be analyzed from the perspective of control parameter adaptation.

• Programming – selected state–of–the–art adaptive DE variants will be
programmed in Java, Wolfram Mathematica, and Python in order to
work with these algorithms and test the proposed modifications.

• Testing – the programmed code will be tested against possible errors
and malfunctions.

• Benchmarking – proposed algorithm variants will be benchmarked on
the basis of CEC benchmark sets of test functions.

• Result evaluation – evaluation of the results will be executed within
the rules of used benchmark sets.

• Result analysis – the statistical analysis of obtained results will be
performed. Population dynamic analysis will be used to asses the explo-
ration/exploitation properties of the proposed frameworks.
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3 DIFFERENTIAL EVOLUTION AND
ADAPTIVITY

Troublesome fine–tuning of control parameters soon became a problem for
researchers and practitioners who were trying to accommodate DE for solv-
ing complex optimization problems. Therefore, researchers started working on
this problem by studying DE’s behavior on different types of objective function
landscapes and tried to come up with a simple guide for the setting of control
parameter values e.g. [5, 7, 8].
The suggestions from different authors vary and are highly dependent on the
choice of objective function testbed used in their study. This fact only sup-
ports the NFL theorem [4], which roughly states that there is no universal
algorithm or algorithm parameter setting, that would solve all the different
types of optimization problems optimally.
The solution to these problems may lie in the adaptive behavior of the DE
algorithm. Since the setting of control parameters and mutation and crossover
operators is dependent on the optimized objective function, these variables
might be set during the optimization run according to the success of the cur-
rently implemented settings. There are a plethora of different variants of adap-
tive DEs [9], and the question is, how to select a suitable algorithm for the
problem at hand. Luckily, since 2005, an annual competition in numerical op-
timization is held within the Congress on Evolutionary Computation (CEC),
which provides a benchmark incorporating multiple test functions from various
domains. These benchmarks provide a good testbed for researchers who can
easily compare their algorithms with the community. Practitioners can also
use the competition results as useful guidance when searching for a suitable
algorithm for their problem.
Since 2013, SHADE [10] and L–SHADE [11] are core parts of the best perform-
ing algorithms of the CEC competitions [12, 13, 14, 15, 16] and form an ex-
cellent basis to start on when designing an efficient optimization algorithm for
single–objective bound–constrained numerical optimization. Therefore, their
selection as a starting point for the author’s research in 2015 was continually
justified.
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4 PROPOSED METHODS

This section provides a detailed description of proposed analysis tools and
adaptive frameworks for adaptive DE–based algorithms.

4.1 Population dynamic analysis

The main disadvantage of modern adaptive DE algorithms lies in their suscep-
tibility to fast convergence towards local optima. In such a case, the algorithm
loses its ability to explore the search space and aims only at the exploitation
of the currently most promising area. On the other hand, algorithms that
mainly explore are deemed to fail on complex and rugged objective function
landscapes. Therefore, researcher’s frequent goal is to find the optimal balance
between their algorithm’s exploration and exploitation abilities. The author
believes that the exploration/exploitation abilities can be analyzed through
studying the population dynamic over generations and thus, a new tool for
that purpose was developed.
In order to study the speed of population convergence towards the same point
in the search space (part of exploitation), the clustering of the population
members was proposed. This technique is based on the Density Based Spatial
Clustering of Applications with Noise algorithm (DBSCAN) [17] and is further
described in section 4.1.1. For the purpose of studying the population explo-
ration abilities, the population diversity metric can be used and is described
in section 4.1.2 [18].

4.1.1 Cluster analysis

The complete description of the DBSCAN algorithm is available in the original
paper [17], this section provides only its implementation for cluster analysis.

Recommended DBSCAN parameter setting:
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1. Set of points S – Individuals in one population form a set of points for
clustering analysis. Each point p is given by parameter values of an
individual.

2. Eps = 1% of the parameter space – e.g., for the CEC2015 benchmark
set with bounds {-100, 100}D, Eps = 2,

3. MinPts = 4 (minimal number of individuals for mutation for most com-
mon DE schemes),

4. Chebyshev distance [19] – if the distance between any corresponding
parameters of two individuals is higher than 1% of the parameter space,
they are not considered as being in the Eps–neighborhood, therefore,
cannot be part of the same cluster.

Clustering analysis is used to evaluate algorithms transition from exploration
(ideally no clusters) to exploitation phase (clusters occur). In order to evalu-
ate that, the DBSCAN algorithm is run on each generation of the population
during the optimization run and the number of clusters and the index of gen-
eration of their first occurrence is recorded. This gives a metric, which was
titled Mean Cluster Occurrence (MCO) [20]. This metric represents the aver-
age index of generation in which clusters occurred over all algorithm runs on
given optimized function.
An example of cluster occurrence is shown in Fig. 4.1, where it can be seen that
the Db_SHADE algorithm maintains the exploration phase longer and that
clusters occur later than in the original SHADE algorithm. The figure shows
mean cluster occurrence by the bold line with confidence interval pictured by
the same color with lighter shade.

4.1.2 Population diversity

In order to evaluate the population’s exploration ability, a population diversity
metric can be used. The combination of population diversity with cluster
occurrence can give a clear picture of the state in which the population resides
in each generation. When comparing DE–based algorithms, higher population
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Fig. 4.1 Example of cluster occurrence comparison between SHADE and
Db_SHADE algorithms on CEC 2015 benchmark, function 8, 30D.

diversity in the time of first cluster occurrence suggests that the algorithm can
still escape the local optima and explore the search space further. This is also
true for many other metaheuristics, not only for the DE.
An useful population diversity (PD) metric was proposed in [18]. This metric
is based on the square root of the sum of deviations (4.2) of an individual’s
components from their corresponding means (4.1).

xj = 1
NP

NP∑
i=1

xj,i (4.1)

PD =
√√√√√ 1
NP

NP∑
i=1

D∑
j=1

(xj,i − xj)2 (4.2)

Where i is the population member iterator and j is the component (dimension)
iterator.
Mean Population Diversity (MPD) [20] is a proposed metric for computing the
average population diversity over multiple optimization runs in the moment of
the first cluster occurrence. This metric reflects the population’s potential to
explore the search space after its part exploits a locally promising area.
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4.2 Multi–chaotic framework for parent selection

The Multi–Chaotic (MC) framework is based on the idea of using chaotic maps
as Pseudo-Random Number Generators (PRNGs) [21]; these generators are
used for parent selection with a probability based on their success in generating
better offspring in previous generations. The next subsections describe the
framework and its use along with experimental results.

4.2.1 Chaotic maps as PRNGs

Chaotic systems implemented in this framework, with their generating equa-
tions, control parameter values, and initial position generator settings based
on [22], are depicted in Tab. 4.1.

Tab. 4.1 Chaotic maps, generating equations,
control parameters and initial position ranges.

Chaotic maps Equations Parameters Initial position

Burgers
Xn+1 = aXn − Y 2

n

Yn+1 = bYn +XnYn

a = 0.75
b = 1.75

X0 = U [−0.1,−0.01]
Y0 = U [0.01, 0.1]

Delayed Logistic
Xn+1 = AXn (1− Yn)
Yn+1 = Xn A = 2.27 X0 = Y0 = U [0.8, 0.9]

Dissipative
Xn+1 = Xn + Yn+1 (mod2π)
Yn+1 = bYn + ksinXnYn (mod2π)

b = 0.1
k = 8. X0 = Y0 = U [0, 0.1]

Lozi
Xn+1 = 1− a |Xn| − bYn

Yn+1 = Xn

a = 1.7
b = 0.5 X0 = Y0 = U [0, 0.1]

Tinkerbell
Xn+1 = Xn + Yn + aXn + bYn

Yn+1 = 2XnYn + cXn + dYn

a = 0.9
b = −0.6
c = 2
d = 0.5

X0 = U [−0.1,−0.01]
Y0 = U [0, 0.1]

In order to use these maps as PRNGs, the transformation rule has to be
developed. The process of obtaining the i-th random integer value rndInti
from the chaotic map is presented in (4.3).

rndInti = round
 abs (Xi)
max (abs (Xi∈N)) · (maxRndInt− 1)

 + 1 (4.3)

Where abs(Xi) is the absolute value of the i-th generated X coordinate from
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the chaotic sequence of length N, max(abs(X)i ∈ N)) is a maximum value of all
absolute values of generated X coordinates in chaotic sequence. The function
round() is a common rounding function, andmaxRndInt is a constant to ensure
that integers will be generated in the range [1, maxRndInt].
Each of the chaotic map based PRNGs has different probability distribution
and unique sequencing. This may be beneficial for the parent selection process.

4.2.2 Parent selection

MC framework for the parent selection process is based on the ranking selec-
tion of chaotic map based PRNGs. A list of chaotic PRNGs Clist has to be
added to the algorithm and each chaotic PRNG is initialized with the same
probability pcinit = 1/Csize, where Csize is the size of Clist. For example, for
five chaotic PRNGs Csize = 5 and each of them will have the probability of
selection pcinit = 1/5 = 0.2 = 20%.
For each target vector x i,G in generation G, the chaotic generator PRNGk

is selected from the Clist according to its probability pck, where k is the in-
dex of selected chaotic PRNG. This selected generator is then used to replace
standard PRNG for the selection of parent vectors, and if the generated trial
vector succeeds in the selection, the probabilities are adjusted. There is an
upper boundary for the probability of selection pcmax = 0.6 = 60%; if the se-
lected chaotic PRNG reaches this probability, then no adjustment takes place.
The whole process is depicted in (4.4).

if f (ui,G) ≤ f (xi,G) and pck < pcmax pcj =


pcj+0.01

1.01 if j = k

pcj

1.01 otherwise
otherwise pcj = pcj

(4.4)
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4.2.3 Results

The MC–SHADE algorithm (SHADE with Multi-Chaotic framework) was sent
for the CEC 2016 competition and ranked 5th out of 9 contestants – Tab. 4.2.
The biggest strength of the algorithm was solving optimization problems in
higher dimensions – 50D and 100D.

Tab. 4.2 CEC 2016 competition ranking.

Algorithm D = 10 D = 30 D = 50 D = 100 Score Rank
LSHADE_EpSin 1.51E+03 3.18E+03 5.88E+03 3.33E+04 4.38E+04 1
UMOEAII 1.44E+03 4.38E+03 1.59E+04 2.96E+04 5.14E+04 2
SSEABC 2.11E+03 7.68E+03 1.91E+04 3.06E+04 5.96E+04 3
iL–SHADE 1.98E+03 5.32E+03 1.80E+04 2.23E+05 2.49E+05 4
MC–SHADE 1.96E+03 1.06E+04 4.55E+04 1.96E+05 2.54E+05 5
AEPDJADE 2.17E+03 8.36E+03 4.42E+04 2.77E+05 3.32E+05 6
LSHADE44 1.91E+03 5.97E+03 2.20E+04 3.76E+05 4.06E+05 7
SHADE4 1.83E+03 1.77E+04 1.65E+05 7.79E+05 9.64E+05 8
SPMGTLO 8.64E+04 2.28E+06 3.87E+07 1.10E+08 1.51E+08 9

4.3 Distance based parameter adaptation

The distance based (Db) parameter adaptation was developed for SHADE–
based [10] algorithms to overcome their problem with premature convergence
to local optima. The original adaptation mechanism for scaling factor F and
crossover rate CR values uses weighted forms of means, where weights are based
on the improvement in objective function value. Such an approach promotes
exploitation over exploration, and therefore, leads to premature convergence.
This is a problem, especially when solving problems of higher dimensionality.
The Db approach is based on the Euclidean distance between the trial and the
target individual. Scaling factor F and crossover rate CR values connected
with the individual that moved the furthest will have the highest weight (4.5).

wn =

√∑D
j=1 (un,j,G − xn,j,G)2

∑|SCR|
m=1

√∑D
j=1 (um,j,G − xm,j,G)2

(4.5)
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The exploration ability is rewarded, leading to avoidance of premature con-
vergence in higher dimensional objective spaces. Such an approach might also
be useful for constrained problems, where constrained areas could be overcome
by individual’s increased movement in the search space.

4.3.1 Results

The proposed distance based parameter adaptation was implemented into
SHADE [10] and L–SHADE [11] algorithms, and the resulting algorithm vari-
ants were named Db_SHADE and DbL_SHADE respectively. Results are
presented in Table 4.3.

Tab. 4.3 Wilcoxon rank-sum results in a form of
wins/ties/loses from the perspective of Db
adaptation enhanced algorithm - CEC 2015.

D SHADE L-SHADE
10 0/15/0 1/13/1
30 5/10/0 5/9/1
50 6/7/2 9/5/1
100 5/9/1 5/8/2
sum 16/41/3 20/35/5

The results show that the Db adaptation is beneficial for SHADE [10] and
L–SHADE [11] algorithms when solving problems of higher dimensionality.

4.3.2 Clustering analysis

The population’s clustering occurs later for the algorithm variants with Db
adaptation. This is mainly true for higher dimensional settings (30, 50, and
100D). Also, when numbers of cluster occurrence instances differ between Db
and non-Db version, the Db version usually clusters in fewer cases. As for the
population diversity, the characteristic feature is that when clusters occur in
the population, diversity is similar regardless of the used adaptation scheme.
It is important to note that in Db versions, clustering occurs later. Therefore,
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the population can explore the search space for a longer time, which proves to
be beneficial for multimodal and complex objective function landscapes.

4.4 DISH

The path to the DISH algorithm led through several successful adaptive DE
algorithms - JADE [23], L-SHADE [11], iL–SHADE [24] and jSO [14]. The
DISH algorithm is an implementation of distance based parameter adaptation
into jSO [14] and was published in 2019 [25]. The algorithmic details are
described in the dissertation, but are omitted in this work.

4.4.1 Results

The results of DISH vs. jSO on CEC 2015 and CEC 2017 benchmarks are
presented in Table 4.4. Once again, it is perceivable from the results that
distance based parameter adaptation is beneficial for higher dimensional prob-
lems and the algorithm variant implementing it (DISH) is able to outperform
the original algorithm without it (jSO).
As it was stated in the previous chapter 4.3, the mean cluster occurrence for
the algorithm variant with distance based parameter adaptation (DISH in this
case) is mostly higher, therefore clusters emerge later in the optimization phase
and the mean population diversity is similar during that time. This supports
the initial idea of prolonging the exploration phase of the algorithm.

In order to present the algorithm to the scientific community, DISH algorithm
was submitted for the CEC 2019 competition – 100–Digit Challenge [26]. The
results are presented in Tab. 4.5. There were two variants in the competition
– DISHchain 1e+12 by Zamuda [27] and DISH by Viktorin et al. [25]. The
difference between these versions was in the larger initial population and more
computing resources in the case of DISHchain 1e+12. It was shown, that
the DISH algorithm is capable of obtaining competitive results and ended on
joined 1st (DISHchain 1e+12) and 7th place out of 18 contestants.

19



Tab. 4.4 Wilcoxon rank-sum results in a form of
wins/ties/loses from the perspective of DISH -

CEC 2015 and CEC 2017.
D CEC 2015 CEC 2017
10 0/15/0 0/29/1
30 3/12/0 3/26/1
50 7/8/0 14/16/0
100 6/7/2 19/10/1
sum 16/42/2 36/81/3

Tab. 4.5 CEC 2019 competition ranking [28].
*results presented after the original deadline of

the competition
Algorithm Total Score Ranking
jDE100 100.00 1
DISHchain 1e+12 97.12 *(100.00) 1
HyDE–DF 93.00 2
SOMA T3A 93.00 2
ESHADE–USM 85.52 3
SOMA Pareto 85.04 4
rCIPDE 85.00 5
Co–Op 84.56 6
DISH 83.92 7
rjDE 83.52 8
mL–SHADE 78.20 9
GADE 75.44 10
CMEAL 73.44 11
HTPC 73.36 12
UMDE–MS 70.40 13
DLABC 67.88 14
MiLSHADE–LSP 60.72 15
ESP–SOMA 51.92 16
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5 THE CONTRIBUTION TO SCIENCE
AND PRACTICE

Author believes that one of the most important aspects of developing new
heuristic optimization techniques is a proper analysis of their behaviour and
identification of problem domains in which the algorithm performs adequately.
Therefore, the population dynamic analysis might be a helpful tool for re-
searchers, and can determine some of the key features of their evolutionary
algorithms – described in the next section 5.1. The section 5.2 describes im-
plementation possibilities of the proposed distance based parameter adaptation
and section 5.3 is devoted to an example of practical application of DISH–based
algorithm on the problem of sustainable waste–to–energy facility location.

5.1 Population dynamic analysis

The main advantages of using proposed clustering and population diversity
analysis can be summarized as follows:

• Optimization phase detection – by combining the information from
cluster and diversity analysis with additional information from the algo-
rithm, the exploration, stall, and convergence phases can be detected.

• Premature convergence detection – forming of early clusters in the
population is a good pointer towards premature convergence.

• Sub–optimal computational budget – when clusters are not formed
during the whole optimization run and the population is still evolving,
it is a good sign of underestimated computational budget. On the other
hand, when clusters are formed, and the population diversity remains
the same, it suggests an overestimated computational budget because
the algorithm is most likely not going to converge any further.

• Population size advisor – forming of clusters that leave out only a
couple of individuals might call for a larger population size. However,
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forming of one large cluster suggests that there are more individuals in
the same area than needed.

• Population management tool – when managing the population size
during the optimization run, clustering information can be used to select
potential candidates for removal and refine the area of new individual
generation.

5.2 Distance based parameter adaptation

Distance based parameter adaptation mechanism can be implemented into
various evolutionary algorithms that use a greedy approach for any weighted
parameter adaptation. Thus, it may be a tool for achieving a longer exploration
phase in environments suitable for it. However, it is important to consider
the additional computational complexity when implementing distance based
parameter adaptation. Especially the large-scale optimization and the use of
Euclidean distance, may suffer from the curse of dimensionality [29].

5.3 Practical applications of DISH

DISH algorithm can be used for any optimization task with continuous param-
eters and can be considered a good choice for problems, which have over 30
optimized parameters since it works best with problems of higher dimension-
ality. One of the real–world applications is described in the next section.

5.3.1 Sustainable waste–to–energy facility location

The problem of waste–to–energy facility location with reduced energy sales
and unutilized capacity of plants [30, 31] leads to a mixed–integer non–linear
model, which can be solved quite efficiently for small and medium–sized in-
stances by traditional commercial solvers. However, for larger instances, the

22



computational complexity becomes an issue. In order to use the DISH al-
gorithm for solving mixed–integer non–linear problems, the algorithm had to
be slightly adapted and led to the emergence of the Distance Random DISH
(DR_DISH) algorithm. DR_DISH algorithm combines DISH with distance–
based clustering–inspired allocation of waste producers to waste–to–energy
facilities with a random sequence of producer processing and can be described
in a three–step process [32]:

1. Location – DISH algorithm determines whether or not to build a fa-
cility in each potential location (dimension of the problem is based on
the number of potential new facilities, and each optimized parameter is
simplified to a binary decision 1 = build, 0 = do not build).

2. Repeat N–times

(a) Allocation - Randomly iterate through producers and assign them
to the nearest existing facility (determined in the first step). If the
nearest facility does not have enough capacity (maximum capacity
is lower than the sum of waste would be), the next nearest facility
with adequate capacity is selected.

(b) Capacities - for each waste–to–energy facility a closest larger ca-
pacity than the sum of its waste is selected.

(c) Evaluation of the solution quality.

3. Out of N solutions, the best is selected and returned.

The DR_DISH algorithm was tested on 14 test cases dealing with instances
of the problem from the smallest (only one considered region) to the largest
(all 14 regions of the Czech Republic). The results are provided in Table 5.1,
where the conventional solver DICOPT [33] is incorporated as a baseline. An
example of the proposed solution by DR_DISH algorithm for the whole Czech
Republic is shown in Figure 5.1.

As can be seen in Table 5.1, DICOPT solver was able to provide better results
up to 9 regions. However, the computational complexity became too high
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Tab. 5.1 DICOPT and DR_DISH solving the
sustainable waste–to–energy facility location.

# of regions [−] Cost [M€] # of facilities [−] Computational time [h:mm:ss]
DICOPT DR_DISH DICOPT DR_DISH DICOPT DR_DISH

1 21.0 21.0 1 1 0:00:04 0:01:48
2 46.3 47.3 5 2 0:00:15 0:03:38
3 61.6 70.0 4 4 0:00:28 0:05:31
4 94.5 102.4 9 4 0:01:15 0:08:22
5 105.5 111.5 6 4 0:01:39 0:09:46
6 119.7 127.2 10 5 0:10:09 0:12:50
7 138.5 146.3 10 5 0:02:14 0:14:54
8 159.8 162.1 12 6 3:55:32 0:17:09
9 211.0 211.9 14 8 5:54:08 0:22:21
10 − 241.9 − 9 − 0:23:44
11 − 252.3 − 10 − 0:26:19
12 − 268 − 11 − 0:31:58
13 − 292.4 − 12 − 0:38:01
14 − 301.7 − 12 − 0:40:53

Fig. 5.1 DR_DISH solution for the sustainable waste–to–energy facility
location - 14 regions.
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for 10 and more regions, and the commercial solver was unable to provide
a feasible solution under given experimental conditions. It is also apparent
that DR_DISH provides solutions that use a smaller number of waste–to–
energy facilities with higher capacity. This is important for the possible real–
world implementation of the solution since it is easier to guarantee a sufficient
waste supply for larger facilities. Therefore, their economic sustainability is
easier [32]. Moreover, the perception of waste–to–energy facilities amongst
the general public is still bad, even though the currently used technologies
are ensuring clean incineration. Thus, the solution provided by DR_DISH
algorithm is more likely to be implemented in practice.

6 DISSERTATION GOAL FULFILLMENT

This section describes steps that were taken in order to fulfill the disserta-
tion goal. This was to investigate current trends in adaptive DE design and
utilize datamining techniques to improve the understanding of the popula-
tion dynamic and possibly use this information to develop more robust and
performance-wise better algorithm variants.

• State–of–the–art review – current trends and ideas in the field of
adaptive DE were studied and analyzed for possible deficiencies in the
algorithm design [34, 35, 36].

• Proposal of novel adaptive DE variants – based on the knowledge
gained from the first step, the proposed methods highlight understand-
ing of the population dynamic by addressing the problem of premature
convergence and fast clustering of the population [37, 38].

• Comparison with state of the art methods – proposed methods
were implemented into the state–of–the–art algorithms (SHADE, L–
SHADE and jSO [39, 25]) and compared with their canonical forms on
CEC benchmark sets. The proposed algorithms were also participating
in CEC competitions in 2016 [40] and 2019 [41].
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• Result analysis – an analysis of the results was executed to understand
the benefits and drawbacks of the proposed methods with the future aim
of implementing this information back into the algorithm [20, 42].

7 CONCLUSION

Methods proposed in this work can be used in both – research and practice.
Researchers might find clustering and population diversity analysis useful for
better understanding of the collective behavior of their evolutionary algo-
rithm’s population. Thus, it can help with the development, implementation,
and mainly evaluation of new ideas in the field of adaptive parameter control.
Practitioners may use the analysis results to identify potential problems with
incorrect computational budget or population size selection.
Following the findings of clustering and population diversity analysis of state-
of-the-art DE algorithms, a distance based parameter adaptation was pro-
posed. This led to the development of the DISH algorithm, which is a good
choice for single–objective optimization problems in the continuous domain
with a higher number of optimized parameters. The algorithm is reasonably
easy to implement, and its implementation in Java is already available on
Github [43]. It may also serve for researchers as a baseline for comparison of
their proposed algorithms.
As for the distance based parameter adaptation scheme, it is possible to im-
plement it into other population–based evolutionary algorithms to affect their
balance between exploration and exploitation and help with the algorithm’s
performance aspect.
The author would like to utilize the knowledge gained in his doctoral stud-
ies and dedicate his future research time and capacity to the development of
an analysis framework for continuous single–objective population–based opti-
mization techniques. Such a framework should help analyze the behavior of
an algorithm during the optimization phase and serve as a guide for the re-
finement of developed techniques.
The incremental development of new evolutionary algorithms is an ongoing
process that gradually improves the quality of the heuristic optimization field
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[44]. Therefore, in author’s opinion, this type of research should be encouraged,
but with a great emphasis on good research practices.
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