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ABSTRACT  

 This thesis and the research work surrounding it, is oriented towards finding 

a solution to a problem in obtaining accurate material constants whenever only a 

single data set (i.e. uniaxial tension test data) is available in hyperelestic material 

characterization.  

To begin with, the serious nature of the problem was highlighted through 

results of set of experiments. There, several material models were tried with two 

data fitting methods and the inaccuracy of data fitting with single data set could 

be proved beyond doubt from this exercise.  

At the next stage, as a preliminary solution to the problem, a suggestion was 

given in the way of secondary data set generation from available data. The 

question at this point was about the method which could be adopted to generate 

the second data set. As an initial trial, exponential function was used with several 

exponents in order to generate data which could be consequently used as biaxial 

data. Amid some minor discrepancies, method delivered some promising results. 

Second approach was sorted in order to get a better trajectory for the generated 

biaxial data. In this method, initial uniaxial data set was divided in to two 

segments and each segment was differently addressed. As a result, the trajectory 

of generated data nearly resembled the real biaxial data. Data fitting preceded the 

data generation, provided very encouraging results too. However, method had 

some serious shortcomings such as, unit incompatibility, and lack of use of 

uniaxial data in the later half. Due to these reasons, the method was not further 

examined for the use in the work.      

Final experiments were done with six materials. Base material and other 

constituents were different in each of these cases and it resulted in varied data 

distributions in both uniaxial and biaxial data. An exponential function was once 

again used with a different exponent in finial tests.  Proximity of generated data 

against real biaxial data was statistically tested. For the testing, 95% confidence 

interval was selected and most of the instances, generated data distribution was 

within the limit. Situations where, results differed, adjustment of confidence 

interval could be proposed with justification considering the hyperelestic material 

properties. Finally, Mooney-Rivlin model was used for data fitting as to further 

emphasize the results.   
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ABSTRACT (CZECH) 

Dizertační práce a výzkum provedený v průběhu doktorského studia se 

zaměřuje na nalezení řešení v oblasti získání přesných materiálových konstant, v 

případě, že je k dispozici pouze omezený soubor dat k charakterizaci 

hyperelastických materiálů.  

Na začátku práce je zdůrazněna závažnost výše zmíněného problému skrze 

výsledky experimentů. Datové soubory z testování hyperelastických materiálů 

byly vyhodnoceny na několika materiálových modelech za použití dvou různých 

metod pro určení hyperelastických konstant. Nepřesnost určení konstant při 

využití dat pouze z měření jednoosého tahu byla jasně prokázána. V další fázi 

výzkumu, bylo navrženo předběžné řešení tohoto problému, a to ve formě 

generování druhého souboru dat (dvouosý tah) z dostupných dat pro jednoosý tah. 

Předmětem výzkumu tedy bylo stanovení vhodné metody pro generování druhého 

datového souboru. Pro prvotní testování byla pro toto generování zvolena 

exponenciální funkce. 

 Mimo drobné nesrovnalosti, byly výsledky této metody slibné. Dalším 

krokem řešení bylo v nalezení přesnější funkce pro generovaná biaxiálních dat. V 

rámci této metody se křivka pro dvouosý tah rozdělila na dva segmenty, přičemž 

každý segment byl řešen odděleně. Byla získána data, která blízce připomínala 

skutečný biaxiální datový soubor. Avšak tato metoda vykazovala vážné 

nedostatky, jako je například nekompatibilita jednotek generovaných dat a 

nedostatečný počet dat v druhém segmentu. Z těchto důvodů nebyla tato metoda 

dále použita. Finální experimenty byly provedeny se šesti různými elastomery. 

Ty se lišily základním materiálem kaučukové směsi a dalšími složkami, což se 

projevilo v různorodosti jednoosých i dvouosých dat. Shoda generovaných dat se 

skutečným dvouosým tahem, byla statisticky testována. Pro testování, byl zvolen 

interval spolehlivosti 95 %, a ve většině případů, byla shoda potvrzena. Pro 

situace, ve kterých se výsledky lišily, bylo navrženo upravení intervalu 

spolehlivosti, což bylo odůvodněno hyperelastickými vlastnostmi materiálů. V 

závěru práce je přínos výsledků ověřen při určení materiálových konstant pro 

Mooney-Rivlinův hyperelastický model.  
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 INTRODUCTION  

 Hyperelastic Materials   

Materials that exhibit large elastic strains at relatively moderate loads are 

called hyperelastic materials [1-4]. This material group consist of mostly, natural 

and artificial rubber, thermoplastic elastomers, and some biological materials 

such as human skin and tissues. Because of engineering properties such as, high 

flexibility, abrasion resistance, thermal and water resistance, these materials are 

used in the industry for wide range of applications [5]. These applications include, 

engine mountings, tires, vibration dampers, hydraulic hoses, structural bearings, 

medical tissues and membranes for medical devices and implants [1, 3]. Some of 

these applications are depicted in the figure 1.1.  

Fig. 1.1 Some industrial applications of elastomers {a. Tyres, b. Mountings, c. 

Dust covers, d. Mats, e. gloves, f. O-rings, g. gum boots} [*]   

Constant development of new materials in this category with improved 

properties leads to ever increasing applications of elastomers. Considering these 

wide range of engineering applications in many fields, it is important to examine 

more about basic properties of these materials.  

 General Properties  

Elastomers are unique set of engineering materials which exhibit elastic and 

viscous characteristics [6].  Chemically they are amorphous polymers [7]. 

Usually, these materials possess low elastic modulus and high bulk modulus [8] 

and considered incompressible or nearly incompressible [9]. Elastomers 

demonstrate high nonlinear stress-strain characteristic under moderate loads [1]. 
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Because of such behaviour, the stress-strain relationship of such materials could 

only be defined through strain energy density functions (strain energy per unit 

volume) [1]. In addition to nonlinear behaviour at high loads, such materials 

possess high flexibility, extensibility, resiliency and durability [3].  

With the advancement in new materials with improved inherent physical 

properties, application of elastomers in the industry is continuously increasing. 

This trend could be expected to continue over the next few decades, especially in 

the direction of thermoplastic elastomers. As interest for use of these materials 

grow, the research on elastomers both from fundamental theory and application 

point of views are equally gained attraction among scientific community [10]. 

This could be witnessed from the large number of research papers published over 

this particular research area during last few years.  

When consider the research on elastomers, it is spread over several directions. 

Out of such large and diverse research domain, mechanical characterization plays 

a very vital role. The reason for that is the usefulness of the outcome in direct 

applications in product design and development.    

 Mechanical Characterization of Rubber like Materials  

Examination based prediction of behaviour of material under mechanical loads 

could be defined as mechanical characterization. Whenever new products are 

designed, by selecting most suitable materials at initial design stage, time, effort 

and costs could be reduced drastically. In that aspect, mechanical characterization 

could be very vital tool. Not only that, such analysis could also be used for new 

material development, failure analysis and forecasts in the way of load limitations 

and capabilities.  

When it comes to mechanical characterization of rubber like materials, the task 

is challenging. The reason for such difficulty is that, there are many governing 

theories involve in the behaviour of rubber, i.e., the large deformations, material 

nonlinearity, plastic and viscoelastic properties, stress softening. Hence, it is very 

difficult to analyse all of these phenomenon simultaneously [3].   

In order to make the analytical task less complicated, normally most of these 

phenomenon is addressed separately at different stages of analysis [11-13]. In the 

present work, we are specifically concerned about the hyperelestic behaviour of 

these materials. At the same time, as stress-strain behaviour of these material is 

nonlinear, the mechanical characterization is usually done through set of pre-

selected material models. A particular model is selected for a specific application 

after through consideration of the usage, related variables, and available data [6]  

and consequently the characterization is done. 
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 Hyperelastic Material Models 

Hyperelestic material models are basically mathematical relations that depict 

strain energy density in terms of either strain invariants or stretch ratios. When we 

consider hyperelestic models, there are many as forty different types available to 

date. Therefore, selection of a model for one particular application may not be 

simple. However, some of these models are applicable only to some specific 

materials and therefore generally less popular, while few others are frequently 

used in hyperelestic research domain.  

At this stage, in order to get the background image of hyperelestic material 

characterization and its research history, in depth literature survey was done and 

observations could be briefly highlighted as follows.   

 A Brief Research History 

The very first hyperelestic material model was introduced by Melvin Mooney 

as a general strain energy function in 1940 [14]. Reliable set of data required for 

the testing of models was then provided by Treloar in 1944 [15]. In 1948, Rivlin 

improved the first model, and it came in to existence as Mooney-Rivlin model 

[06]. This is the most frequently used model for the elastomer characterization. 

The simplest model of all, the Neo Hookean model [16], is a special case of the 

two parameters Mooney-Rivlin model. Further to these initial models, in 1967, 

Valanis and Landel [17], introduced a new method of representing the strain 

energy function. In this method, strain energy density was expressed as a function 

of stretch ratios instead of stain invariants. The model developed by Ogden [16], 

in 1972 is also frequently used for characterization.  The Yeoh model [18], which 

came in to effect in 1990 is another common model. Arruda and Boyce also found 

a frequently used model as recent as 1993 [19]. There are many other models 

which are less known and could be used in specific applications [20-27]. 

A comparison of theory and experiment related to biaxial testing was done by 

Ogden [28]. James, Green, and Simpson [29], suggested an analytical forms of 

the strain energy density function for isotropic, incompressible materials as early 

as 1975. Tejasri and Basak [30] investigated the possibility of predicting the best 

model for a hyperelastic material like rubber using the Treloar’s uniaxial test data. 

Comparative study was done by Destrade, Saccomandi, and Sgura [31] fitting of 

data belongs to three deformation ranges. A detailed comparison of hyperelastic 

models was also done by Marckmann and Verron [32] using twenty models 

including some of the less common models.  By doing so, they could introduce a 

certain ranking for the fitting by the success of the results. Similar comparison 

was done by Kayacı and Serbest using several compounds [33]. Need for a second 
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data set, i.e., biaxial data for accurate result for data fitting is discussed by 

Johannknecht and Jerrams [34]. Importance of use of several data sets when 

characterising a model for mechanical response, is also emphasized by Morrow 

et. Al. [35]. The change of material constants with change of carbon black was 

studied by, Hassan, Abouel-Kasem and others [36]. Ogden and Saccomandi 

pointed out difficulties in getting unique optimal solution for data fitting [37]. 

Morrow et al. used Hotelling’s T2 test to evaluate the data fitting [35]. Further 

research on data fitting with hyperelestic models was done by H. P. Gavin [38]. 

His work based on The Levenberg-Marquardt algorithm. The paper discussed the 

methods of error minimizing in fitting and therefore, could be helpful in 

comparing different fitting results. Furthermore, literature survey on hyperelestic 

models done by G. Marckmann & E. Verron revealed the development methods 

of hyperelestic models across the board so far[39].  

Considering all mentioned work of previous researchers we could initially 

formulate the topic discussed here in. Having mentioned briefly, the background 

study related to this work, it is appropriated to start with the research question at 

this point, and thereby extend the description towards explaining our intended 

answer to the problem.  

 Data Fitting 

As general practice in characterization suggests, after selection of appropriate 

model for the characterisation, in order to complete the task, the relevant material 

constants are needed. They are obtained through nonlinear regression analysis, or 

simply by data fitting. The data collected through uniaxial, eqi-biaxial and pure 

shear laboratory experiments are used for the fitting. 
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 THE OBJECTIVE  

 The Problem 

As so far mentioned, hyperelastic material characterization leaped along 

several fronts over the last eighty or so years. Numerous models came in to 

existence and new methods of analysis were tried. In addition to that, advanced 

methods for testing of different strain modes were also established. Development 

of powerful computers and introduction of FEA tools also further simplified the 

hyperelastic material characterization.  

However, amid all these new developments in the hyperelastic material 

research area, the problem of elimination of complicated laboratory tests such as 

eqi-biaxial testing for data collection, seems yet to be addressed. On the other 

hand, due to such complexities and cost concerns a single data set, i.e. uniaxial 

data, is frequently used. Amid repetitive use, method known to be erroneous. 

Therefore an investigation for an alternative solution to address this issue became 

a necessity and could be well justified.  

 The Aim 

Having mentioned the necessity, we could clearly outlined the aim or the 

objective of the work as follows. That is to find a method of obtaining realistic 

and accurate material constants whenever only uniaxial data is available.  

 The Solution  

Throughout this research work, possibilities of replacing data obtained through 

complicated and sometimes inaccurate biaxial experiments, by set of artificial 

data generated through uniaxial data is examined.  

 The Approach 

First of all, uniaxial data set is obtained through typical standard test. 

Consequently, data set thus obtained is manipulated through a mathematical 

formula in such a way that, second set of data could be obtained. Thereafter, this 

second set of data, which could be considered as an alternative to the missing 

biaxial data could be used for the combined data fitting together with uniaxial 

data.  
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 STATE OF THE ART  

  The Chemistry of Rubber  

  Rubber is, in simple terms, a material that can be stretched as much as twice 

or more of its original size and still could be formed in to its initial shape once 

released. The reason for such behaviour of these materials is their long chain like 

molecular structure. This structure gives the rubbery effect to the material. 

Chemically rubber is a hydrocarbon and its main constituent is polyisoprene. 

Typical appearance of these molecules is depicted in figure 3.1.  

 

Fig. 3.1 Chain like structure of rubber [40] 

Just like in any other polymer, this long chained molecule structure of the rubber 

material is a direct result of repeated connection of basic unit cells. Constituent 

unit cells make these materials different from one another. However, long chain 

structural arrangement of these materials does not necessarily provide the rigid 

backbone required for them to function as engineering materials. Normally, these 

materials behave like viscous fluids. To improve the rubber material strength and 

to transform it to useful engineering material, during the early ages of the 

development, a process called vulcanization was introduced. The method first 

invented by American industrialist Charles Goodyear in 1844 and is still used for 

the very same reason. 

 The Vulcanizing Process  

In this process, the long chain molecules of rubber materials are cross-linked 

through added foreign material at elevated temperature (140°–180° C) as shown 

in figure 3.2. For natural rubber, this material is often Sulphur. But, for other types 

of elastomers, there are different types of materials with similar characteristics. 

For example, Peroxides, and metal oxides are also used for such purpose [7]. 
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Fig. 3.2 Rubber vulcanization process [40] 

Amount of vulcanization or vulcanization density in general effect physical 

properties as given in the Fig. 3.3. According to the graph, the tensile strength 

increases with the improvement of cross linking density. The maximum tensile 

strength located somewhere in the vicinity of 13.5 × 10−5 mol/cm3 of cross 

linking Density. 

Fig. 3.3 Vulcanization properties Vs cross-link density [41] 

 On the other hand, through the cross linking, the loose three dimensional 

molecular chain network could be improved to get a higher rigidity. In addition 

to cross linking, as a result of molecular intertwining, there are entanglements 

between long chains, in particular, with high molecular weight polymers. For 

rubber, these entanglements provide a permanent bonding to the material structure 

as depicted in figure 3.4. 
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Fig. 3.4 Entanglements between long chains [42] 

However, number of cross links required for effective stability of the material 

is not very much clear even at situations where exact chemical composition is 

given. Therefore, it is suggested to express force-extension relationship in terms 

of strain energy density which subsequently expressed in terms of strain invariants 

or stretch ratios in order to clear ambiguity. 

 An Introduction to General Purpose Elastomers  

Elastomers or rubberlike materials that are found in the industry can be broadly 

categorize in to two groups as general and special purpose elastomers. Bulk of 

rubber products manufactured today fall in to the group of general purpose 

elastomers.  They comprised mostly, natural Rubber (NR), polyisoprene (IR), 

polybutadiene (BR), styrene-butadiene (SBR), nitrile-butadiene (NBR) and 

ethylene propylene rubber (EPR / EPDM). These elastomers are often used 

because of their good physical properties, processability and adoptability. In 

addition to that, they are economical too. Though there are many positives, some 

negative properties are also there. Less heat, oil and solvent resistant are dominant 

in negative side of these materials. Besides, some of them are susceptible to ozone 

and oxygen attacks too [43]. 

Natural Rubber (NR) 

Natural rubber is produced from the milky white liquid extracted from the 

Hevea Brasiliensis tree (latex). The latex is first stabilized with preservatives (e.g., 

ammonia, formaldehyde, sodium sulphite). Then it is coagulation and 

hydroxylamine is added to produce technically-specified, constant-viscosity 

grades of natural rubber. The glass transition temperature (Tg) of natural rubber is 

around –70 °C and its structure composed of mostly cis-14-polyisoprene 

molecules (Fig. 3.5). In Addition to that, small amounts of fatty acids and protein  
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residues are also there. These ingredients enhance the sulphur vulcanization 

process [9].  

Fig. 3.5 Unit cell of Natural Rubber 

Styrene-Butadiene Rubber (SBR) 

SBR is a copolymer of styrene and butadiene. Styrene content is about 23% 

wt. The glass transition temperature is around –55 °C. It is considered the most 

widely used synthetic elastomer. Material possesses a very good electrical 

resistance. The constituent unit cell is shown in the figure below (Fig. 3.6) [9]. 

 

Fig. 3.6 Unit cell of Styrene-Butadiene Rubber 

Synthetic Polyisoprene (IR) 

 This synthetic material contains Poly-isoprene which is also the main 

ingredient of natural rubber. Therefore, properties of these two materials are 

similar and they include resilience, low hysteresis, low rolling resistance and high 

fatigue resistance. Both show poor resistance to oil, sunlight and ozone and have 

limited thermal capability.  The structure of this rubber is given below (Fig. 3.7). 

Fig. 3.7 Unit cell of Synthetic Polyisoprene Rubber 
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Polybutadiene (BR) 

The major use of polybutadiene is in tyre manufacture with over 70% of the 

elastomer produced going into treads and sidewalls. BR shows excellent abrasion 

resistance and low rolling resistance. It has high resilience. The glass transition 

temperature (Tg) Is less than –90C. The structure of material composed of unit 

cells given here (Fig. 3.8).  

Fig. 3.8 Unit cell of Polybutadiene Rubber 

Acrylonitrile-Butadiene Rubber (NBR) 

NBR, or as commonly known, nitrile rubber, is an emulsion copolymer of 

acrylonitrile and butadiene. Material has low density, show good heat stability 

and is a good oil resistant. Because of oil resistance and heat resistance, 

applications include fuel hoses, gaskets, rollers, and other similar products. The 

rolls for spreading ink in printing and hoses for oil products are other obvious 

uses. Typical glass transition temperature (Tg) is –60 °C. The NBR unit cell is 

given in figure 3.9.  

 

Fig. 3.9 Unit cell of Acrylonitrile-Butadiene Rubber 

Ethylene-Propylene Rubber (EPR, EPDM) 

Ethylene propylene rubber is an elastomer prepared from ethylene and 

propylene monomers. It has a fair tensile strength and shows excellent resistance 

to weathering and ozone, and chemical attacks. Heat resistance lies between 

150°C and 204°C. Because of good physical properties, material has a great 

acceptance in the sealing and electrical cable manufacturing industry. The unit 

cell of this material is given in figure 3.10.  
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Fig. 3.10 Unit cell of Ethylene-Propylene Rubber 

Chlorobutyl (CIIR) 

 Chlorobutyl rubber is produced by the halogenation of butyl rubber. 

According to Mark et al. [44], these rubbers are highly impermeable to air and 

show very low water absorption, and exhibit good heat, oxygen and ozone 

resistance. Common uses of these are given as in liners of radial tires, covers and 

insulation of high-voltage electric cables, and automobile engine and radiator 

hoses. The unit cell of this material is given in figure 3.11.  

Fig.  3.11 Structure unit of Chlorobutyl  

Apart from main raw materials discussed above, in most of rubbers, there are 

additives that are used to get some specific properties for specialized applications. 

 Additives and Rubber Compounding  

In the industry of rubber, there are many diverse applications as we already 

mentioned. These applications demand specific properties from rubber materials. 

Base materials alone cannot provide such exact properties. Therefore, they are 

mixed with various additives to achieve desirable effects. However, as indirect 

effect of additives, stress- strain properties of rubber compound also get changed. 

Apart from additives, fillers are used to reduce the cost of production of rubber 

materials. Then, there are some other mixing agents which are used to enhance 

the process. In order to give general idea about all these additives, fillers and ad 

mixtures frequently used, some common ones are discussed in detail here.  

Carbon Black, Silica and Talc are the main additives in rubber making process. 

Besides, there are some other minor adding agents used at the rubber mixing stage 

such as oils, wax, and fatty acids for process improvement and pigments for 

aesthetics and colour.  
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Carbon Black  

Carbon black is one of the main reinforcing ingredients find in the rubber 

mixture. It improves the tensile strength of the rubber. There are several types of 

carbon black and are classified according to the particle size and degree of surface 

oxidation. 

Silica 

Silica is also a reinforcement ingredient in rubber. It too increases the tensile 

strength and the tearing strength of the rubber material. However, addition of 

reinforcement fillers make rubber material move towards viscoelastic region [44].  

Talc 

Talc is used as a reinforcement filler in NBR, EPDM and Chloroprene (CR) 

rubber. It is a hydrated magnesium sheet silicate with the chemical formula 

Mg3Si4O10(OH)2. Talc in rubber reduces the viscosity of compound, thereby 

facilitate the processability of moulded parts. They also improve extruded product 

quality, increase production rates and enhance UV radiation resistance of exterior 

parts such as automotive profiles [44].  

However, there are other factors such as mixing and dispersion, presence of 

contamination, curing, porosity which affect the stress strain behaviour of rubber 

compound [43]. 

 The Mechanics of Hyperelasticity  

Having discussed about chemistry and the major constituents of elastomers, 

the mechanics of these useful material group is worth mentioning here to 

understand the behaviour of them when subjected to various load conditions. 

Mathematical relations that govern the behaviour of any material under loads 

is vital in forecasting stresses and strains experience by that material. In general, 

section of science that discuss this in detail is called mechanics and, the specific 

topic that deals with mechanical behaviour of materials where it is modelled as a 

continuous mass called continuum mechanics.  

Continuum mechanics is originated from the man’s interest in studying the 

movement and deformation of a body in space [16]. Basically, in relation to this 

topic, changes of a moving body over the time such as, translation, and rotation 

are examined and discussed. As basis here, two coordinate systems are used in 

tracking these physical changes. Coordinate system that is based on undeformed 

state or configuration called Eulerian or spatial while system based on deformed 

configuration is called Lagrange or material coordinates. Therefore, by adopting 
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similar nomenclature in defining a very small body B0 in undeformed domain, the 

position could be marked with the coordinates (ξ1, ξ2, ξ3) (Fig. 3.12). 

Fig. 3.12 Change of configuration [45] 

After state change in the space, supposing the body B0 takes a shape of B in 

deformed configuration with coordinates (X1, X2, X3), the function that maps this 

state change could be defined by, X (ξ), as given in equation 3.1.  

X (ξ): ξ → X.         3.1  

In the equation 3.1, the vector X in deformed configuration and vector ξ in 

undeformed configuration are named, Eulerian and Lagrange coordinates 

respectively. In the state change of small material body considered, translation 

and rotation which is also called rigid body motions should be eliminated from 

the equation in order to get the pure stress and deformation relationship. The rigid 

translation is eliminated through a matrix F called deformation gradient. F is 

defined as follows.  

j
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ji

x
F




,  3.2  

or,  

 xF  3.3  

Here  is the gradient operator worked out with differentiation with respect 

to material coordinates (ξ1, ξ2, ξ3). If equation (Eq. 3.3) is elaborated, it would 

appear as follows.  
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With this definition,  
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xF            3.5  

New vector x’ is defined adding translation c to the vector x. 

 cxx ,

          3.6 

As c is not a function of , Differentiation with respect to it will result in, 

 ,xF           3.7  

Here, deformation gradient F describe the deformation and the rotation while 

omitting the translation. In order to remove rotation, by decomposing F in 

multiplicative sense: 

RUF            3.8  

Assuming R has the pure rotation and U, the pure deformation, the polar 

decomposition of equation 3.8 leads to separation of rigid rotation and pure 

deformations. When it comes to small deformations, this multiplicative 

decomposition is replaced by additive decomposition. As U is difficult to 

ascertain, U2 is calculated. As R is an orthogonal matrix,  

1 RRT .           3.9  

Therefore,  

IRRT             3.10 

Where, I is the identity matrix. Pre-multiplication of equation 3.8 results in  

.2 FFUC T             3.11 

In the equation 3.11, C measures the pure deformation. This is called the Right 

Cauchy-Green tensor. Since C reduced to unit matrix for the undeformed state, at 

the beginning, tensor shows 1’s which is little confusing. Therefore, as to get away 

with this ambiguity, Green-Lagrange strain tensor  is defined in describing large 

strains and used often.  

 IC 
2
1 .          3.12 

Considering the principle stretch ratios 321 ,,   respective principle axis 1, 2, 

and 3, the deformation gradient can be expressed as follows.  
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By adopting the equation 3.13, it can be derived the normal stretch for 1st 

2

111 C           3.14 

direction followed by other two directions similar to that. In undeformed 

configuration stretch ratio is 1. Considering the equation 3.12, the normal 

component for the   can be given as follows. First, 
11  as given in equation 3.15, 

and then similarly, the other two, 22 , 33
.   

 12

12
1

11   ,         3.15 

 After a brief introduction to mechanics of hyperelasticity, in order to relate the 

topic to the current research work, essential theory component of the work is 

described here. 

The theory related to this work can be divided in to four major sub topics. First 

section would present a short introduction to some of the often used hyperelastic 

models. Section that proceeds covers the mathematics related to manipulation of 

curves. In the third section, statistical theory related to present work would be 

discussed. Least square method and tools used to compare the suitability of fit are 

elaborated under this section. Finally, metrological principles and application of 

Digital Image Correlation (DIC) in stress-strain measurements are briefly 

introduced. 

 Mathematical Models  

The independence of stresses on previous deformation history and the 

reversibility of imposed deformations in elastic materials allow us to prove that 

constitutive relations for both linear and nonlinear elastic solids can be derived 

from a strain energy potential function. This argument is very similar to the path 

independent work done on a particle in a potential field where the forces can be 

derived from a differentiable potential function [16]. By this analogy, if stresses 

take the place of forces, a differentiable potential function must exists and it is a 

function only of the deformations. In such cases stresses can be expressed as, 

 

ij

ij
de

edW


          3.16 

Where ij  is true (Cauchy) stresses,  eW  is potential strain energy density 

function (strain energy per unit volume), e is any deformation measure (e.g., finite 

Eulerian strain tensor, stretches). Any material for which such a potential strain 

energy function exists is called a green-elastic or hyperelastic material. 
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When one needs to select a hyperelestic model for mechanical characterization 

of a particular elastomer, there is a large group of   eW  forms to select one from. 

However, it is established that the selection of model depends on factors such as 

material application, corresponding variables and available data [8]. Four major 

qualities of good material model are identified [9]. It is stated that, ability to 

produce the ‘s’ shape, good functionality in all deformation modes, less material 

parameters and simple form of the formula as key qualities of such model. Having 

discussed about these governing rules, some of the popular models often found in 

the hyperelestic research domain are examined. 

Model development history 

According to James et al. [29], there are two main approaches, namely 

molecular method where molecular response due to deformation is considered, 

and the phenomenological approach where modified elastic theory is used 

together with experimental data to get the characteristic. In this sub topic, the 

initiation and evolvement of characteristic curves are briefly examined.  

Neo-Hookean model 

This is the simplest of all hyperelastic models. The model depends on first 

invariant I1. General form of model is given in equation 3.17.  

 311  ICW           3.17 

In the equation, W is the strain energy density, I1 is the first strain invariant and 

C1 is the material constant. Usually Neo-Hookean model is used for applications 

with low strains compared to other models. According to M. Kamper, A. Bekker 

and others [46] it works best at around 50% strain limits. This model can be used 

when there are less amount of data available for fitting [9]. 

Mooney-Rivlin model 

This is the most frequently used model from all. Mooney-Rivlin is a 

phenomenological type model. This model is applicable for moderate strains up 

to 300% [8]. The description of the model can be given as below.  

     2211 , 133   JDIICW
jiN

ji ji       3.18 

In the strain energy density function, I1, I2 are first and second invariants while 

D, Ci,j are material constants and J is elastic volume ratio. Depending on i, j and 

N, for the function can have multiple terms. However, Mooney-Rivlin function is 

so far used with up to maximum nine terms. Neglecting compressibility, 

consecutive three forms of the model can be written as follows (Eq. 3.19-3.21).  

   33 201110  ICICW
        3.19 
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      3333 2111201110  IICICICW
      3.20 

          2202
2

1202111201110 333333  ICICIICICICW   3.21 

Ogden model 

This is a unique type of strain energy density function which expresses in terms 

of stretch ratios instead of strain invariants. The model is first introduced by 

Ogden in 1972 and is accurate over a large range of strains [47]. The general form 

of the model is given below (Eq. 3.22). 
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 1 , 2 , 3 are stretch ratios and μ, α, and D, are material constants.  

Yeoh model 

This model was first introduced in 1993. The model is based on first invariant 

only. According to Shahzad et al. [9], the Yeoh model is good for carbon black 

filled rubber characterization. Furthermore, according to them, the model is 

applicable over a large range of strains. The model can be described as follows 

(Eq. 3.23).  
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Arruda-Boyce model 

The Arruda-Boyce model was introduced in 1993. The model is based on 

molecular chain network and depend only on first strain invariant (Eq. 3.24). 

Model function well with limited test data [9].  
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In the equation, Ci and λL are material constants. The Initial shear module is 

given as μ and J is the determinant of strain gradient tensor F. D is a material 

constant.  

Some other frequently used models 

Apart from models discussed, there are few other models recurrently find in 

the hyperelestic material research area. Among them, the Gent and Thomas 

model, Humphrey-Yin model, Haines-Wilson model, Rivlin and Saunders model, 

the Hart-Smith and the Isihara are prominent. 
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 Curve Theory  

The main task of this work is to obtain a data set which matches a distribution 

similar to the typical biaxial data dispersion. Uniaxial data set is used to obtain 

this biaxial data dispersion. Therefore, in order to get a one dispersion from the 

other, it is vital to study mathematical options available for this task. 

Generally, hyperelastic models are following some rules. Therefore, in order 

to generate artificial set of data that matches real data dispersion, it is important 

to understand these basic facts. Firstly, all hyperelastic curves start from origin. 

Secondly, the basic shape of curve resembles a stretched s. On the other hand, 

according to Kumar et al. [8], the curve changes its trajectory at every inflection 

point. Referring Moony-Rivlin model, they went on to say that, the number of 

such points depend on the number of terms in the model. 

Power functions 

Power function is a function that gives a specific shaped curve in the x-y 

domain. Referring equation 3.25, it can be noticed that there is a factor n, which 

decide the final shape the power curve.  

 y = xn           3.25 

Its influence on shape can be demonstrated from figure 3.13. 

 

Fig. 3.13 (a & b) Power function configuration [48] 

As it can be evident from two graphs, at the origin, first one lead to an 

asymptote while the second lead to zero. 
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Exponential functions 

The exponential function in its general form is given in equation 3.26.  

y = bx           3.26  

By varying factor b, shape of the function can be changed (Fig. 3.14). 

 

 

Fig. 3.14 (a & b) Exponential function configurations [48] 

 

Fig. 3.15 Natural exponential function [48] 
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The natural exponential function 

The natural exponential function (Eq. 3.27) is a special case of exponential 

function. The general shape appear to be similar to graph given in figure 3.15. 

y = ex           3.27 

Here, e is taking the value of 2.718. 

Transition of curves  

If a function f(x) needs to be moved up, down, left or right, it can be done 

with a use of positive number k as given figure below (Fig. 3.16). 

Fig. 3.16 (a & b) Transition of curves [48] 

Enlargement and contraction  

If a function y = f(x) is multiplied by a constant k with different values, the 

resultant graphs with respect to initial curve could be given as in figure 3.17. This 

operation could be used to magnify or contract a graph. In the left set of curves, 

distortion is more compared to the right set of graphs. 
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Fig. 3.17 (a & b) The enlargement and contraction of curve [48] 

Reflection 

In order to get a reflection of a graph, function or the variable should be 

multiplied by minus one (-1). Resulting shifts of graphs of f(x) are given in figure 

3.18. 

Fig. 3.18 Reflection of a curve [48] 

 Statistical Tools  

Statistical tools are normally used to evaluate raw data obtained through 

laboratory experiments to get a meaningful results for further analysis. In this 

particular case, data obtained through three basic tests are fitted in to a 

predetermined model using non-linear regression technique. Furthermore, such 

statistical tools are used in order to evaluate the fitting results. That is to examine 
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how good a certain model fits related to the set of data provided. Therefore, it is 

intend to elaborate the data fitting and analysis of best fit in this section. 

Non-linear regression 

As rubber like materials behave nonlinearly under large strains, in order to get 

the correct representation of it in the graphical domain, models should be 

described in polynomial form. The data extracted through laboratory tests could 

be fitted with these models to obtain the correct behaviour subsequently. 

Therefore, it is appropriate to describe the polynomial regression theory to 

elaborate the process [49]. As an example, for the demonstration purpose, a 

second order polynomial is considered as given in equation 3.28. 

exaxaay  2

210         3.28 

By considering data fitting to this equation with n number of data points, the 

sum of squares of the residuals is given by equation 3.29. 
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In order to generate the least squares fit, derivatives of above equation with 

respect to each unknown coefficient of the polynomial can be obtain as the first 

step. (Eq. 3.30-Eq. 3.32) 
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These equations can be set to zero and resultant group of equations are as 

follows. (Eq. 3.33- Eq. 3.35) 
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In these equations, i takes values from 1 to n.  When further examine above set 

of equations, one can see that they are all linear equations with finite number of 
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unknowns. In this particular case, it is three, namely, a1, a2, a3.  Hence, with 

known experimental data, these unknown can be calculated. If this second order 

form extend in order to accommodate mth order polynomial, the basic equation 

would look like as given in equation 3.36 below.   

exaxaxaay m

m  .....2

210        3.36 

Considering the previous case, it can be seen that unknown coefficients of 

general case also can be obtained by solving (m+1) no of simultaneous linear 

equations. For the generalized case, the standard error is given by equation 3.37.  
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 Metrology and Theory of Digital Image Correlation (DIC)  

Metrology is one major corner stone of any research.  It provides the data 

required for evaluation part to the research work. For hyperelestic material 

characterization, this involves in basically results of three tests. Namely these tests 

are, uniaxial, biaxial and pure shear. 

These three tests are different from one another due to the method of 

application of force. However, in each of these tests, it is used to measure force 

and displacement. Consequently, stress and strain are calculated according to 

basic definitions. Final results are then presented as graphs of stress vs strain. 

However, correct calculation of stresses and strains depend on the accuracy of 

aforesaid test measurements. Altogether, mechanical characterization demands 

high accuracies related to basic measurements of force and length. Not only that, 

sometimes these measurements should be done in three dimensional space. For 

example, such is the case with bubble test related to the biaxial deformation. 

Unfortunately, some of conventional test methods so far used in mechanical 

characterization are neither standardized nor accurate. Therefore, when the 

measuring system demands such high norms, Digital Image Correlation technique 

or DIC technique as it is commonly known, is one good option. Hence, for the 

present research work, the DIC measuring technique is used in biaxial testing 

extensively. Therefore, it is important at this stage to get familiar with the basic 

theory behind the Digital Image Correlation measuring method. There are many 

ways of using this technique. However, the theory involved is the same.  
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An Introduction to DIC 

Digital Image Correlation is a non-contact optical strain measuring technique.  

The measuring system comes complete with a digital camera, zoom objective 

Fig. 3.19 Migration of subset due to deformation  

and PC software. It can accommodate more than one camera depending on the 

accuracy and the type of analysis. Literally, there are two major types of analysis 

related to the DIC namely, 2-D and stereo DIC. 

In DIC, a shift in image pixel position is tracked through series of images when 

deformation is taking place due to the applied load on specimen during the test 

(Fig. 3.19). 

For the evaluation of displacement, a correlation algorithm is applied through 

a software tool. Deformation of image is mapped through Cartesian coordinate 

system as depicted in figure 3.20. Highly optimized input parameters provide very 

accurate results [50]. 
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Fig. 3.20 Mapping of deformation through coordinate system  

  

Reference image Deformed image 
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 MATERIALS AND METHODS 

 Laboratory Experiments 

In order to gather uniaxial, biaxial and pure shear stress-strain data, there are 

three different experiments often done. They are named, uniaxial, eqi-biaxial and 

pure shear tests, according to their respective load applications. These 

experiments are done in several different configurations as we observed during 

the literature survey. However, in each of these cases basic idea behind the load 

application was followed in order to get the intended data set. By following these 

footsteps, we used the universal testing machine to collect uniaxial data while eqi-

biaxial data were collected through a bubble test. Throughout these tests 

consistency was maintained as to collect unbiased data sets. Aforesaid 

experiments are described in detail below.  

Uniaxial testing  

Uniaxial test is the easiest form of test from three experiments mentioned. This 

is a standard test. The method is described in detail under ASTM D412 or ISO 37 

: 2017. [11] 

Fig. 4.1 Uniaxial test: a. Standard sample b. Test apparatus  

Initially, as a preparation for the test,  several standard test pieces were cut 

from the uniformly thick sample material sheets according to the guide lines given 

in the said standard, which is used to explain the  rubber general procedures for 

preparing and conditioning of test pieces for physical testing methods. From the 

specifications, type 1 dumbbell specimen was selected. Referring the figure 4.1 

specimen dimensions could be given as below (Table 4.1).  

  

 

a. 
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Table 4.1 Sample measurements  

Dimension (all measurements are in 

mmʼs.) 

Type 1 

A – Overall length (min) 115 

B – Width of ends 25±1.0 

C – Length of narrow portion 33±2 

D – Width of narrow portion 6+0.4/-0 

E – Transition radius outside 14±1 

F – Transition radius inside 25±2 

Gauge length  25±0.5 

 

Test pieces were then mounted one at a time between two jaws of the standard 

tensile testing apparatus configured from the universal testing machine. 

According to ISO 37, standard grip separation rate is given as 500 mm/min.  

After placement of specimen between jaws, uniaxial loading was applied 

continuously while tension and the elongation were recorded. Process was 

continued until the test sample gets failed. Results were obtained at equal time 

durations and were then recorded as engineering stress and engineering strain.  

Unit for the stress was taken as Mega Pascal (MPa) while strain was recorded as 

a percentage of initial length. 

 Eqi-biaxial testing 

Use of inflated rubber membrane for testing uniaxial tension has a long history. 

It was first introduced by Treolar in 1944. 

Ever since, the method was frequently used by scientists in order to test rubber 

in biaxial tension [9, 11-12]. However, this method is not standardized and few 

variations could be observed [51-55]. Despite these variations, the basic elements 

of the test are the same for most of these cases. Essential principles of the bubble 

test performed is described in figure 4.2. 
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First, a uniform thin circular specimen was prepared from the test material. 

Then, the centre line and two parallel lines, each 5 mm apart to it were marked 

with white marker as given in figure 4.2 a. Thereafter, white paint was sprayed on 

the test piece as to get a speckle pattern near the marks. Then, it is held between 

two metal rings (jaws) of the apparatus. Subsequently, a flow of pressurised air is 

introduced into the chamber which is created by top wall of the specimen and the 

bottom part of ring assembly. With the increasing pressure, the volume inside the 

chamber is being enlarged while pushing the specimen membrane outward as 

given in figure 4.2.b. Due to this phenomenon, the rubber membrane takes a form 

of dome or bubble and theoretically, the topmost point of the bubble or the pole 

undergoes eqi-biaxial tension. 

Fig. 4.2 Biaxial test:  a. Standard sample   b. Test apparatus  

During the experiment, two digital cameras were used to track down cross 

hairs corresponding to the marks and DIC technique was used to measure the 

bubble deformation. The calculation of the stress could be done as given below. 
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The stretch ratio lambda (λ) is calculated by comparing the length of curvature 

between marked positions (l₁ ) in each image with the undeformed specimen 

length (lο) corresponding to these points.  

𝜆 =  𝑙₁/𝑙𝜊          4.1 

Considering material incompressibility hoop stress at the pole of the bubble (σθθ) 

can be expressed as follows [56-58]. 

б𝜃𝜃 = 𝑝𝑟𝜆𝜃𝜃
2 /(2𝑡0)          4.2  

In the equation 4.2, p is the applied pressure, to is the initial thickness of the 

specimen, r is the radius of curvature and λθθ is the stretch ratio at the pole. 

Pure shear testing 

Theoretically the planar or pure shear experiment must be done with rectangle 

sample in which one dimension is constrained or restricted against deformation. 

In order to achieve this, the specimen dimensions are selected in such a way that 

deformation of one side could be neglected (bringing in to nearly zero value) 

compared to the deformation of the other side. Uniformly thick 240x24x2 mm 

rectangular rubber sample specimen was selected as a test piece here. Specimen 

thus prepared was then marked with a centre line across the larger dimension. 

Subsequently, along the centre line, two cross hair marks (20 mm apart) were 

inked, just for the tracking of the deformation. 

After selection of specimen, the universal testing machine is used for pure 

shear tests too. Similar to uniaxial testing, while the load is gradually applied, 

tension and elongation were recorded at several positions and stress and the strain 

were thereby calculated. 

 Collection and Refinement of Raw Data 

The data obtained through above mentioned tests, need to be refined as to 

produce a useable set of data for the fitting. Fifty to hundred data points are 

sufficient for a reasonable good fit [59]. There are often some erroneous minus 

points which should be eliminated. These adjustments could be done using a 

typical data editing program such as MS Excel or MATLAB [60-65]. Once, raw 

data is refined, it is then ready to be fitted in to the pre-determined model. 

 Fitting of Data 

Once data is refined, next step of the process is to fit the data in to an 

appropriate model. As already discussed, there are many models to select from. 

The fitting could be done using a statistical software. Most finite element 

programs are also provided with some of the key models [66-68]. Single data set 

or multiple sets could be tried with several models and results could be compared. 

Comparison could be done by, a visual inspection of trajectory, suitability of fit 
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and values of material constants. By varying material constituents and proportions 

these trials could be repeated for all the selected models. 

 Materials Used in Experiments 

The Styrene-Butadiene Rubber (SBR) commonly used in the tyre 

manufacturing industry was used as testing material during initial trials. For all 

experiments, specimens were taken from the same rubber sheet which is prepared 

under uniform process conditions. 

Final experiments were done with six different materials, of which, properties 

are given in the table 4.2.  

Table 4.2 Material data for final tests  

Material Label Shore A Hardness Phr Rubber Base 

M1 50 50 NR,CIIR 

M2 57 64 NR,BR,SBR 

M3 69 60 NR 

M4 86 65 NR, BR 

M5 78 84 NR, SBR 

M6 64 54 NR,BR 

Phr - (parts of carbon black (and other additives) per hundred parts of rubber) 
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 RESULTS 

This chapter presents the results of experiments carried out during the full 

stretch of the work.  Apart from final set of experiments, five other experiments 

were done related to this work. These initial experiments were done using the data 

previously obtained. At the end, final experiments were done in order to test the 

proposed solution and reach ultimate objectives of the research.  

At the very beginning, a scientific query of the problem was done. Initial 

solution for the problem was proposed through the experiment that followed it. In 

the third experiment, an additional improvement was done to the answer given in 

the second. While searching for a answer, certain intermediate queries came 

related to the Mooney material model and two of these experiments are allocated 

to such examinations. Therefore, results of these experiments are excluded from 

the final reporting.   

 Presentation of Problem (Experiment -1) 

As a starting point to the research work, the risk of using only single data set, 

i.e. uniaxial data for fitting, in general to most hyperelastic material models, and 

in particular to Mooney-Rivlin model was established with scientific evidence. In 

this effort, a detailed comparison was done related to Mooney-Rivlin two, 

parameters, Mooney-Rivlin three parameters and Yeoh models.  

Figure 5.1 to - figure 5.3 show resultant curves obtained for this analysis. From 

two graphs given in each figure, first graph (Fig. 5.1.a, 5.2.a, 5.3.a,) shows only 

uniaxial data fitted curves (O.U.) while second set (Fig. 5.1.b,5.2.b, 5.3.b,)  gives 

uniaxial, biaxial and pure shear combined data fitted (C.U.S) resultant curves. 

Two curves in each graph are identified as uniaxial, biaxial. Three data sets also 

plotted in the same graph as to visually inspect the results. 
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Fig. 5.1. a Mooney two parameter model comparison (Only uniaxial data fit). 
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Fig. 5.1. b Mooney two parameter model comparison (Combined data fit). 
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Fig. 5.2.a Mooney three parameter model comparison (Only uniaxial data fit). 
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Fig. 5.2.b Mooney three parameter model comparison (Combined data fit). 
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Fig. 5.3.a Yeoh model comparison (Only uniaxial data fit). 
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Fig. 5.3.b Yeoh model comparison (Combined data fit) 

 Initial Attempt in Solving the Problem (Experiment -2) 

It was proven from first experiment that one data set used alone in data fitting, 

is not sufficient to obtain accurate results for material constants and thereby, for 

the mechanical characterization of rubber like materials. Hence, the question that 

follows is, how to get an additional data set whenever uniaxial data is available. 

The status quo of the problem is as such, an effort was exerted in order to 

address the problem and several attempts were made to get a feasible solution to 

it. At this stage, a second experiment was done related to the topic and results of 

the experiment are presented here.  
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In this experiment, a set of stress-strain data was collected using uniaxial 

tension upon SBR rubber samples and it was then manipulated using a simple 

mathematical formula to get a hypothetical second data set. The data set thus 

generated consequently used in place of missing biaxial data for combined data 

fitting. The results obtained for the experiment were evaluated first, with the real 

biaxial data and, then with data fitted curves for three models mentioned.  

The equation used to obtained hypothetical data is a simple exponential curve 

function. It is given in equation 5.1. The general dispersion of actual biaxial data 

takes a shape of inverted S. This was considered when selecting exponential curve 

for generation of data. 

uay

b ey 
         5.1 

In the formula given in equation 5.1, yb is the generated biaxial stress while yu 

is the corresponding uniaxial stress. A factor ‘a’ is included and it is tested initially 

with three values 0.6, 0.7 and 0.8.  Strain is considered as same for both cases. 

Once the most suitable data set is selected from these three different data sets, 

combined data fitting was done together with uniaxial data. Results were obtained 

in the way of three curves, uniaxial, biaxial and pure shear.   

For the initial comparison, three generated biaxial data sets related to 0.6, 0.7 

and 0.8, were plotted alongside real biaxial data set (Fig. 5.4). After a close visual 

inspection, data set that resembles most to the original data set was selected.  
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Fig. 5.4 Comparison of generated biaxial data 

The results of the data fitting part of the experiment is given in figure 5.5. The 

model used here was the Mooney two parameter model. In order to ascertain the 

improvement due to newly adopted method, a comparison was done between 

combine data fitting which utilized the data of uniaxial and newly generated 

biaxial and single data set fitting, i.e. uniaxial data, of results previously given in 

figure 5.1 (a). In order to ascertain the improvement, apart from simple visual 

inspection, a detailed statistical analysis also was done. In this analysis, two 

different data fitting cases, only uniaxial fitting and combined fitting were 

compared related to residue error. The main purpose was to examine the closeness 

of curves to each other in each of these cases. Calculated residue values are given 

in table 5.1. 
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Fig. 5.5 Data fitting with combined data (Ex. uni. +Gen. Bi.)  

Table 5.1. Residue Error values for two cases. 

 

  

Curve type 

R.S.S. for only 

uniaxial data fitting 

(Fig. 5.1 (a) 

R.S.S. for combined data fitting 

(Exp. uniaxial and gen. biaxial data) 

(Fig. 5.5) 

Uniaxial 1.7155 3.1275 

Biaxial 32.025 1.1595 

Pure shear 8.2099 1.6638 

Sum  41.9504 5.9508 
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 An Improvement to the Initial Solution ((Experiment -3) 

Since there had been some discrepancies in the generated data set compared to 

real biaxial data in the previous experiment, further refinement of formula was 

needed. In order to improve results, some changes were done. The method which 

was adopted for the refinement of data is briefly given here.   

As trajectory of the uniaxial data curve changes from the inflection point, 

current data distribution was divided in to two parts from that point. In the case at 

hand, it seems that inflection point lies at 0.6 in the strain scale. Therefore, having 

separated the uniaxial data set in to two segments, they were treated separately 

with two different formulas. With the use of two new equations, the biaxial stress 

data was generated. Two formulas used for the purpose is given in equations 5.2 

and 5.3. 

For X<0.6,     ub yeY  7.0

      5.2 

For X> or = 0.6,  
)6.0(2

6.0



  ux

ub eyY
     5.3 

The data set obtained through the method then plotted in a graph alongside real 

biaxial and uniaxial data in order to examine the compatibility (Fig. 5.6). 

Furthermore, data fitting was done separately with four different models as to 

investigate the success of the method. 

The Models considered here were Mooney 2, Mooney 3, Yeoh, and Ogden. 

Figures 5.7 to 5.10 give results of this comparison. Both data sets, experimental 

biaxial data and generated biaxial data are separately fitted and respective curves 

were plotted in each model graph, so that a comparison could be done easily. 

Uniaxial, Biaxial and pure shear curves are named in these graphs as U, B and P 

respectively. 
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Fig. 5.6 Gen. Bi. Data and Exp. Bi. Data with Uni. data        

Fig. 5.7 Mooney-2 model comparison   
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Fig. 5.8 Mooney 3 comparison 

Fig. 5.9 Yeoh comparison 
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Fig. 5.10 Ogden comparison 

 The Detailed Solution to the Problem (Final Experiments) 

As to prove our approach in finding additional biaxial data set and thereby to 

establish the validity of the method, a set of experiments were done. The 

experiments which were planed here consisted of 30 uniaxial experiments and 10 

biaxial experiments for each material. As already mentioned, there were six 

different types of material to be tested (Table 4.2). Therefore, given number of 

experiments were planned and carried out for each of them. In this section, the 

results of these experiments are discussed in detail. 

Results of these experiments could be divided in to three segments. First 

section discusses the resultant data distribution related to both biaxial and uniaxial 

experiments. The next section would be dealing with the statistical analysis. Final 

and the last section discusses the fitted model curves related to real data and the 

generated data. Additional topic would be allocated to discuss the possibility of 

optimizing the solution. 
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5.4.1 Data Distribution Comparison 

In order to get a relationship between uniaxial data and biaxial data, first of all, 

each material needed to be represented by single unique uniaxial and biaxial data 

set. As there were more than one set of data from each material, this was achieved 

by obtaining the average of multiple data sets. All thirty data sets were adjusted 

to have same number of data points and thereafter averaged data values were 

calculated by taking simple average with 30 number of points.   

Fig. 5.11 Distribution of uniaxial data 

Averaged uniaxial data distributions of all materials are given in Fig.5.11. 

According to the figure, in general, all data sets depict typical uniaxial 

distributions. However, if we consider each distribution separately and observe 

closely, there are some minor differences. Two materials namely M4 and M5 

stand out from others. They show unique distribution pattern. Furthermore, 

materials M1, M2 and M6 lies very close to each other. Position of material M3 

is somewhat away from the rest. If we take the material M4, it is some out of 

general shape of biaxial data distribution. The trajectory in this case is unique and 

visibly has two portions to it. First segment appear to be rapidly increasing from 

zero up to around 10% strain. During the second half, data dispersion seems 

flattening.  
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By and large, all data sets seems having the sag in the middle potion. In some 

data sets, the middle portion sag is prominent while in others it is less dominant.  

Fig. 5.12 Distribution of biaxial data 

Distribution related to biaxial data for same six materials are given in figure 

5.12. Initial visual inspection of this figure reveals a picture similar to the uniaxial 

data distributions previously discussed. However, in this case, differences 

between each individual set seems much dominant than previous instance.  

In this case, all data distributions are shifted more towards stress axis as with 

the biaxial data distributions. Like in previous case, same three data sets are 

visibly separated from the rest. Though it might not be significant, two data sets, 

M4 and M5 are crossing each other at somewhere in the vicinity of 70% strain. 

Data set M4, change its trajectory in this case at around 6% strain which is little 

earlier than in previous case. Out of two segments of this distribution, first 

segment seems steeper than in previous instance.  
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5.4.2 The Relationship between Uniaxial and Biaxial Data Distributions   

In order to construct a relationship between uniaxial data and biaxial data, 

each data set must be representative average curve of the respective material. 

Therefore, in the previous section, these average curves were obtained for each 

material for both uniaxial and biaxial deformation modes. Considering the data 

distributions of these materials, and the relationship we already discussed, a 

mathematical formula which is given in equation 5.4 is arranged in order to link 

two data sets. 

x

ub e  5.4 

In the equation, b is the biaxial stress at an arbitrary point in the stain axis while 

u
 is the corresponding uniaxial stress at the same point. Exponent x of the 

exponential function is a positive real number.  

Using this relationship, several biaxial data sets were calculated after assigning 

different values to the unknown number x. From these initial trials, it could be 

selected a suitable value for x somewhere near 0.4, considering the generated 

biaxial data and the actual biaxial data. After that, further improvements were 

done and x was fixed at 0.35.  

With selection of particular value for x, using above equation, corresponding 

biaxial values could be generated for each uniaxial stress. Using this method, all 

biaxial stresses were calculated and plotted together with related uniaxial and 

experimental biaxial data, as given below from figures 5.13-5.18. Newly created 

substitute data for biaxial stress- strain distributions are, for identification 

purposes called hereafter as generated data whenever given in the text. 
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Fig. 5.13 Generated data for M1  

Fig. 5.14 Generated data for M2 
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Fig. 5.15 Generated data for M3 

Fig. 5.16 Generated data for M4 
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Fig. 5.17 Generated data for M5 

 

Fig. 5. 18 Generated data for M6 
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As visible from these graphs, generated data sets are located in general, close 

proximity to the respective experimental data sets. Only exception is the M4 data 

set where generated data set is taking a trajectory similar to uniaxial and hence 

not showing close resemblance to the biaxial experimental data distribution. 

However, in this particular case, the said difference could be observed when 

compare uniaxial and biaxial experimental data sets as well.  On the other hand, 

when we examine all generated curves closely, a certain deviation could be 

observed at the later part of strains for each material. These deviations are 

happened to be in various proportions according to each of these materials.  

Out of all generated biaxial data sets related to these six materials, the data 

generated using uniaxial data of material 5 seems the best and the closest to the 

original data.  

5.4.3 The Statistical Reasoning  

After generating biaxial data distributions for each and every material tested, 

next task was to test statistically how close these generated data to the real data. 

In order to do verify this, we followed a typical significant test devised as to suite 

this particular case.  

Significant testing is normally done in order to estimate the level of confidence 

with witch one can forecast the population from a sample. This is a typical 

statistical testing method and here, it is adopted to include this particular situation 

as follows. 

According to the method discussed here, first of all averaged biaxial data set 

is divided in to five equal segments. This is done according to the stress obtained 

by dividing maximum average stress in to five (Fig. 5.19). Idea behind this effort 

is to get five different points in the data distribution to compare real and generated 

biaxial data. 
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Fig. 5.19 five tapping points 

 Thereafter, corresponding strain values were selected. By plotting generated 

biaxial data distribution according to the material in the same graph, equivalent 

generated biaxial stress values for these strain tapping points could be calculated. 

At the same time, all experimental biaxial data were plotted in the same graph and 

equivalent stress values corresponding to each tapping point strain is also 

collected.  

For the demonstration purpose, the stress values obtained for material M1 is given 

in the table 5.2, below for the ten sample graphs and for that of generated graph. 

The first column of the table gives each tapping point strains collected through 

average curve maximum stress dividing in to five.  
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Table 5. 2 Stress values for five tapping points for M1 

Tap. 

Pt. 

strain 

[%]  

Curve number  & corresponding stress [Mpa] Gen. 

curve 

Stress  

[MPa] 

1 2 3 4 5 6 7 8 9 10 

11.53 0.68 0.54 0.52 0.52 0.48 0.51 0.42 0.56 0.46 0.57 0.49 

38.85 1.21 1.18 0.99 1.05 1.00 1.02 0.76 1.08 0.93 1.17 1.07 

63.51 1.71 1.71 1.42 1.50 1.46 1.48 1.14 1.54 1.36 1.68 1.55 

87.83 2.22 2.31 1.91 2.01 1.98 2.01 1.84 2.04 1.86 2.30 2.08 

108.4

3 

2.70 2.87 2.37 2.50 2.47 2.51 2.37 2.52 2.35 2.95 2.53 

 

Ten stress data values were examined against respective generated stress value 

using statistical significant test. For the statistical significant test or t-test, null and 

alternative hypothesis arguments were constructed as follows.  

Null Hypothesis 

Ho :  x         5.5 

Alternative Hypothesis 

H1 :  x         5.6 

Where,  is the Generated stress while x is the mean of ten values of ten curves at 

the same taping point. Results of this significant test are tabulated here. (Table 

5.3) 
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Table. 5.3 p values derived using student’s t-distribution  

Material  Stain point & value [%] p value  

M1 

  

  

  

  

1. 11.53 0.095 

2. 38.85 0.454 

3. 63.50 0.378 

4. 87.83 0.551 

5. 108.43 0.676 

 M2 

  

1. 9.32 0.389 

2. 27.82 0.113 

3. 49.88 0.197 

4. 69.16 0.861 

5. 85.15 0.178 

M3 

  

  

  

  

1. 7.21 0.179 

2. 25.67 0.522 

3. 47.94 0.391 

4. 67.32 0.951 

5. 83.29 0.425 

M4 

  

  

  

  

1. 0.94 0.016 

2. 3.08 0.001 

3. 8.76 0.001 

4. 37.94 0.000 

5. 65.42 0.000 

M5 

  

  

  

  

1. 4.04 0.000 

2. 16.90 0.041 

3. 34.07 0.462 

4. 49.88 0.086 

5. 64.35 0.257 

M6 

  

  

  

  

1. 4.04 0.001 

2. 15.79 0.059 

3. 39.77 0.676 

4. 62.66 0.929 

5. 79.90 0.227 

By referring the third column of the table, we can see that critical p values for 

most of the significant tests are above 0.05. This means that the forecast can’t be 

rejected or in other words, with 95 percent confidence we can say that null 

hypothesis cannot be rejected in such cases.  

However, there are few exceptions where, the p value is less than 0.05. In 

particular, for the material M4, with relation to all points of concern, shows such 
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low values. As we have already mentioned, this particular material seems 

deviating from others and behaving differently from the group. Therefore, such a 

result could be expected for the statistical test as well. 

 In other cases where P value is less than 0.05, it would be appropriate to lower 

the confidence interval and check the results once again. This suggestion could be 

justified as typical behavior of rubber materials allow such wide margins in the 

testing.   

5.4.4 The Generated Biaxial Data Set Optimization 

As part of the generalized biaxial generating formula is an exponential 

function, the exponent can take many values. The value of exponent affect the 

relative position of the generated data set. Therefore, we examine the possibility 

of getting a unique value for the exponent which would provide the optimal 

position for the data set related each material.  At the end, further examination 

was done as to find one optimal value representing whole material group.  

The method used here is explained as follows. Considering the five tapping 

points used for extraction of data for statistical calculation, by referring figure 

5.20, in order to minimize the error between biaxial experimental data and 

generated data (∆y), following formula could be drawn (Eq. 5.7-5.9). 

Fig. 5.20 Error between real and generated biaxial data 

     
5
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2

gbibi yyxf       5.7 
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5

1

2x

uibi eyyxf       5.8 
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Using this formula, by allocating values to exponent x, from 0.005 to 0.7, f(x) vs 

x was drawn. Graph drawn for material M1 to M6 are given below from Fig. 5.21 

to 5.26 looks as follows. From these graphs, it is possible to find the value of 

exponent x where, error of real biaxial data set and generated data is minimal.  

Fig. 5.21 Error calculation for M1 

Fig. 5.22 Error calculation for M2 
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Fig. 5.23 Error calculation for M3  

Fig. 5.24 Error calculation for M4 
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Fig. 5.25 Error calculation for M5 

Fig. 5.26 Error calculation for M6 

From these graphs, it can be evaluated the optimal value of x for materials M1 

to M6 as follows. 
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Table 5.4 Optimal values for Exponent. 

Material  Optimal Value  

M1 0.35 

M2 0.35 

M3 0.36 

M4 0.27 

M5 0.46 

M6 0.38 

Furthermore, considering all the data together, it is possible to get a one 

exponent for all materials. Idea is to get a one formula for the material group. For 

this task, calculations were done and related plot was presented in Fig. 5.27. 

Fig. 5.27 Error calculation for all materials together 

Considering the overall graph, optimal value for this material group could be 

fixed at 0.3525. 

The model testing for the newly generated biaxial data 

Having examined and obtained positive results for the statistical testing, next 

and the last step was to see how these artificial data would work with some of the 

common models when used for combined data fitting with uniaxial data.  In this 

section of the work, several models were examined for the compatibility and to 
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obtain the correct model to represent the material group. However, some of the 

material models tested were not compatible with this material group and showed 

inconsistence results. Mooney two parameter model was the most compatible. 

Results of this model fitting for six materials separately are given from figures 

5.28 to 5.33.  

Fig. 5.28 Mooney-2 Model: Generated and real data comparison – M1 

Combined data fitting of both real biaxial data with uniaxial data and generated 

biaxial data with uniaxial data were done separately. Uniaxial model seems 

coinciding in these two instances. 

Data fitting results given in for material 2 in figure 5.29, also shows similar 

results like in previous case. However, unlike previous instance, in these cases, 

data and the model curves seems somewhat compatible with each other. 

Material 3 data fitting results given in figure 5.30 also gives a set of curves 

somewhat similar to M2 curves, though with higher stresses.  

As it was the case with M4, the model curves seems deviating from the data 

distributions (Fig. 5.31). On the other hand, two combined data fitted modal 

curves are deviating from each other from early strain value 
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Fig. 5.29 Mooney-2 Model: Generated and real data comparison – M2 

Fig. 5.30 Mooney-2 Model: Generated and real data comparison – M3 
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Fig. 5.31 Mooney-2 Model: Generated and real data comparison – M4 

Fig. 5.32 Mooney-2 Model: Generated and real data comparison – M5 
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For the material M5, (Fig. 5.32) once again, biaxial and generated biaxial 

model curves are close to each other, but data set seems away from the models. 

In the case of uniaxial this is very much improved and all three are laying near to 

each other. Stresses are relatively high in this case.  

 

Fig. 5.33 Mooney-2 Model: Generated and real data comparison – M6 

In the case of M6, (Fig. 5.33) model curves are crammed between two data 

sets. This means, model is lower in the biaxial and higher in the uniaxial when it 

comes to represent respective data. However, for both instances, real and 

generated data fitted models give somewhat similar trajectories, though in biaxial 

case, at later part the generated curve is little off-shoot from the real one.  

Altogether, data fitting for Mooney-2 model shows mixed results for six 

materials discussed. As these materials are different from one another in the way 

of hardness and carbon black content which consequently leads to property 

change, such variations could be expected. 
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 DISCUSSION 

 Inadequacy of Data (Experiment 1) 

The first experiment was done with the objective of finding the discrepancy in 

data fitting with single data set when compared with that of combined data fitting. 

Three hyperelastic models were selected for the comparison. Each model was 

examine related to three deformation forms, uniaxial, biaxial and pure shear.  

Three deformation curves for Mooney-2 model (Fig. 5.1.a & b), show very 

clear improvement for the combined data fitting compared to single data set 

fitting. Mooney-3 parameter model also shows (Fig. 5.2.a & b) similar results. 

However, in this case, biaxial curve seems volatile in both the cases. Yeoh model 

(Fig. 5.3.a & b) seems the least responsive when it comes to the fitting method 

improvement.  

Finally, as a concluding note for this experiment, following could be 

mentioned. Three models tested for single and combined data fitting showed 

mixed results. Mooney-2 seems the most improved due to the combined data 

fitting. Mooney-3 model could be considered partially improved with the multiple 

data set fitting, while Yeoh model seems not responsive to change in data fitting 

technique. However, discrepancies in all three models related to only uniaxial data 

fitted curves prove that method is not accurate and therefore less suitable for the 

mechanical characterization. 

 First Solution (Experiment 2) 

Second experiment has two comparisons. First one is the data comparison. In 

this section, two biaxial data sets, real and generated are compared. For the 

generated data, there are three data sets, 0.6, 0.7 and 0.8 (Fig. 5.4). From visual 

inspection it could be selected the data set generated using 0.8 factor as the closest 

to the real data. A statistical examination subsequently carried out with three data 

sets also established the same conclusion.  

In the second part of the experiment, data set generated by the method 

described is used to combine data fitting together with uniaxial data. Results 

obtained for this effort was compared with the only uniaxial data fitted curves. 

When we compare figure 5.5 with that of 5.1.a, one could observe a clear 

improvement related positions of all three curves in the case of combined data 

fitting. Biaxial curve seems the most improved. However, the generated biaxial 

data distribution needs further improvement as there is a clear deviation from real 

data which could be observed at the later stage of strains. 
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 An Improvement to the Initial Solution (Experiment 3) 

The third experiment was done as to improve the results of previous 

experiment. The method was changed to obtain a better trajectory for the 

generated data set.  From the figure 5.6, it could be observed that generated curve 

in this case is very much close to the real data. This is an indication to the success 

of this approach.  

In the second part of the experiment, four models, Mooney 2, Mooney 3, Yeoh, 

and Ogden were tried with data fitting using real and generated data (Fig. 5.7 & 

5.10) separately. Except for the Yeoh model, curves of all models show 

remarkable improvement related to the data fitting. Discrepancy showed by the 

Yeoh model might have been due to the fact that particular model is not suitable 

in representing this specific material characterization. Basically, it could be 

apportioned to a mismatch between the model and the material. 

 The Detailed Solution to the Problem (Final Experiments) 

As given in results section, these experiments were done for six different 

materials. Each material has different ingredients and therefore physical 

behaviour is different from one another.  In order to get first hand opinion of the 

materials, physical examination and visual observation was done. Initial feel of 

materials suggest that M2 as the most soft. Materials M1 and M6 seems somewhat 

similar in toughness. M3 feels tougher than previous two materials. M5 comes 

next in toughness feel and M4 seems the toughest material. 

If we consider regarding the carbon black content, according to data sheets, 

M1 has 50 Phr which is the lowest. M6 contains little more than M1while M3, 

M2 and M4 lies in the lower half of sixties in the ascending order.  M5 gives the 

highest carbon black content at 84 Phr. By referring once again, [43], it can be 

stated that this additive could affect the toughness of the overall material in 

compliment with oil content. According to the Dick [43], carbon black has three 

critical factors which influence the bulk material. That is particle size, shape and 

surface chemistry. However, in this particular case, lack of additional information 

regarding carbon black hinders a concrete prediction of effect of it on each 

material. Furthermore, there is no information about other additives. Hence, due 

to incomplete description of constituents of these material compounds, pre 

judgement of behaviour could not be possible. Additionally, this fact limits a 

suggestion of particular material model to be tested in the latter part of work too. 

Only possibility remain here is to test few models and select a better one in order 

to validate the results. However, it might not affect adversely as main objective 

of the work is rather less focused on a particular model, but on data. 
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Having discuss the initial state of these materials and thereby expected results 

according to the constituents of them, we are moving to examine the results of 

proceeding experiments. After series of uniaxial and eqi-biaxial experiments on 

each material, stress strain data were plotted and general appearance of these data 

distributions were examined and explained. In addition to that, it could be 

mentioned here as a general comment that while all four materials exhibit 

generalized data distribution pattern two materials, M4 and M5 markedly deviate 

from the group. This might have been due to their high toughness.   

When it comes to discuss the final results, first of all, it is important to note 

that all the generated data sets are obtained through one unique exponential 

formula with one single exponent. Generated biaxial data were plotted together 

with real biaxial data, for each of these materials separately as given in results 

section (Fig. 5.13 – 5.18). Respective uniaxial data were also given as to show the 

relative position of biaxial data.  

First figure from this set of graphs, which is given as Fig. 5.13, depicts the 

generated data for the material M1. Generated data very much resembling the real 

data in this case. Two data sets, real and generated, cross each other at around 

110% strain level. Gap between two data sets is highest at the extreme end at 

strain level of nearly 140%. From the visual inspection, it can be noted that in this 

instance, generated data are successful in representing the experimental biaxial 

data all along the full range of tested strains. 

Data distribution given in figure 5.14 is of material M2. In this case, uniaxial 

data shows some sag in the middle. As a result, generated data also possess that. 

Evidently, experimental biaxial data is without such sag. Therefore, there is a 

mismatch between two data sets, generated and experimental, after passing a 

certain strain value.  Although generated data distribution trajectory seems out of 

place at the later stage, relative position of the generated data set in the stress-

strain coordinate domain seems correct in this instance. 

The third graph in this series is from the material M3 (Fig. 5.15). Once again, 

the sag in the uniaxial data which we were discussing could be observed here. 

Consequently, like in previous instance, this discrepancy migrate in to the 

generated data. The mismatch it has with the experimental data at the later stage 

of strain values could be apportioned to this. In this instance, highest stress level 

material reach is bigger than in M2. Relative position of the generated data seems 

correct this time as well. 

Material M4 related data distributions given in Figure 5.16 depict a somewhat 

different picture compared to the material distributions so far discussed. In this 

case, data distributions, both uniaxial and biaxial, have visibly two segments. 
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They are, an initial rapid stress progression and, a gradual progression, which 

followed the former. However, rate of progression of stress, at initial stage is 

different from uniaxial to biaxial. Therefore, when it comes to develop a second 

data set, i.e. a hypothetical biaxial data set, based on uniaxial data, a mismatch 

between generated data set and real data set is obvious. This effect could have 

been eliminated if the approach was different. On the other hand, such effort could 

have bring unnecessary complication to the equation. When we consider the 

gradual progression, which follows the rapid one, visibly both uniaxial and biaxial 

data dispersions have, nearly similar stress development or progression rates.  

Despite such a similarity, generated data distribution could not be improved as 

that preliminary mismatch occurred during the initial stage, when reach the 

second stage carries a vertical shift. 

Data distribution belongs to material M5 is given figure 5.17 shows very much 

promising result. Though uniaxial data in this case also show the same middle 

portion sag already discussed, similar sag prevail in the biaxial experimental data 

provided the perfect match required for the generated data to fit in. 

Final material in the tested series is M6, and its related data distribution are 

given in figure 5.18. In this particular case, there are some oscillations in uniaxial 

data.  These oscillations are visible throughout the entire length of the data 

distribution. It was not possible to locate the root cause for this abnormality and 

therefore, we had to live with it in the analysis and generate the secondary data 

with it. Despite these abnormality the data dispersion shows perfect match up to 

about 60% strain. Beyond that point, generated data, like in previous instances, 

seems deviating from the real data. Once again, location of the generated data in 

the stress-strain domain seems very much matching with the real data. 

 Having discussed the initial outcomes based on visual observations, at this 

stage it is appropriate to go in to detail analysis with results as to prove the 

viability of the method.  Therefore, in order to statistically check how close the 

generated data dispersion to the real data is, we adopted the confident level testing 

method.  Results of this effort were already given in the previous section and at 

this point, we would like to further discuss these results one by one. If the 

confidence interval is set to 95, the null hypothesis is to be accepted, the p value 

should be above 0.05. 

For the material M1, all the points show p values higher than that. This 

indicates  simply that, we cannot refuse the null hypothesis at each of these points 

and therefore two data groups are close to each other in 95 times out of 100 at 

each point. Materials M2 and M3 also gives similar results. However, as we 

expected, material M4 is out from the expected values at all tapping points. When 
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it comes to Material M5, first tapping point shows a minor value than 0.05. Initial 

discrepancy visible between generated and real data sets might have led to this 

result. However, if the confidence interval is changed, this might come within the 

acceptance range. Same outcome could be noticed from the M6 too.  

Statistical proof of viability of method encouraged us to further examine the 

results in a way of data fitting. The results of this fitting exercise were given in 

previous section and in here, we would like to discuss about these results little 

further.  

Combined data fitting results obtained with Mooney 2 model for material M1 

(figure 5.28) show two close curves for both generated and experimental 

instances. In here, while there is no significant difference between two uniaxial 

curves, biaxial curves give some gap at the latter stage of strains. Both biaxial 

curves are somewhat deviating from the experimental data. In general, this data 

fitting results approve the answer we have so far obtained regarding the closeness 

of two biaxial data sets, generated and experimental.  

Second material in the group, M2, poses a similar picture (figure 5.29). 

However, in this case, biaxial data set significantly differ from the model curves. 

Nevertheless, the main purpose of this exercise is to find out whether there is any 

significant difference between two combine data fitting cases, rather than 

evaluating fitting results with data. In that sense, results seems agreeable.  

Material M3 data fitting graphs given in figure 5.30, though stress levels are 

higher, show similar picture like in previous two cases. The gap between two 

biaxial curves is widening over the strain. Once again, the biaxial data dispersion 

seems departing from the model curves for both experimental and generated 

cases.  

Model curves for material M4 happened to be completely out of place from 

the data (figure 5.31). This behaviour can be expected as material seems in every 

way differ from the rest of the materials in this group. In this case, the gap between 

two combined biaxial data fitting curves seems rapidly widening. 

Combined data fitting model curves given in figure 5.32 for material M5 show 

the closest trajectories to each other from all so far discussed. In this case, uniaxial 

data seems considerably deviating from model curves at the later part of strains. 

However, this behaviour could be observed equally for both uniaxial curves.   

 Final figure in this series, figure 5.33 depicts data fitting results from material 

M6.  Once again, this shows similar trajectories we already discussed in M2 and 

M3. In this instance, data and the model curves are reasonably compatible as they 

should be. The deviation observed between data and biaxial curves at later stage 
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of strain might have been as mentioned by R. Schaefer [41] due to the selection 

of lower order of the Mooney model.  

After discussion of data fitting results, it is suitable to discuss the additional 

effort we excreted in finding exact exponent for the exponential function we gave 

as a solution to the problem. 

 As already given in the results section, we did a least squire method analysis 

to minimize the gap between experimental data and the generated data. Each 

material was separately tested and finally, we went further by adding all material 

together to get a one unique solution for the material series. In each of these cases 

we obtained minimum values at different points of exponents’ axis and they are 

given in table 5.4. Most of the time, exponent value is in the vicinity of 0.35. 

Material M5 and M4 are the only exception in this assumption. However, in this 

instance, value of material M4 could be excused as material itself is a misfit to 

this common group. The value related to M5 seems somewhat higher than normal 

and this might have been due to the excessive gap in those random tapping points 

the generated data could have created with experimental real data.  

The overall curve in this analysis show a minimum value at 0.3525 and this 

could be very much justified. Therefore, with that result, we could suggest that 

most suitable exponential function as e0.3525. 
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 CONCLUSION 

The research work included in this thesis touched the area of hyperelestic 

material characterization. As described in the text, materials of this nature are not 

the easiest to characterize. The only way forward through them is by fitting data 

to an appropriate model which could be selected from forty plus such models 

available to date. However, in order to get material constants, due to lack of 

enough data sets, usually one data set was selected for fitting. This practice proved 

to be erroneous.  Therefore, effort was taken herein to solve this problem by 

generating an additional data set whenever one data set is available.  

To begin with, error in the data fitting with one data set was established. In this 

effort, two data fittings, only uniaxial and combined uniaxial plus biaxial were 

done and results were compared.  Biaxial data and curves were not in any way 

matching in the case of single data fitting, where as in combined fitting, curves 

were nicely seen near to respective data. With that results, it was proved the 

erroneous behaviour of the method of single data fitting.  

Having done that, first proposal was given in the way of exponential function 

as to obtain a second data set from the available uniaxial data. The outcome of 

first effort showed promising results in the way of secondary data.  Second data 

set obtained through the method was consequently used together with uniaxial 

data for combine data fitting. Clear improvement in fitting results could be 

observed both visually and statistically compared to only uniaxial data fitting.   

Possibility of further improvement to the method of generating of secondary 

data was examined. In this method, uniaxial data was divided in two segments 

and each segment was separately addressed with different empirical formula to 

get the second data set. Final results of this experiment showed a further 

improvement to the overall fitting results. However, this method creates some 

complexities to the solution and therefore, was not further tested for application 

possibility.  

Thereafter, final experiments were done using six different materials. Once 

again, exponential function was used with a different exponent. This time, overall 

results were encouraging and therefore continued with further testing. Out of six 

materials, five were reasonably successful. Only material M4 showed some 

resentment to the method. Later on, a statistical confidence interval test was done 

in order to check the closeness of two biaxial data dispersions. Students T table 

was used for this examination.  
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Consequently, a combined data fitting also was done with Mooney 2 model 

and results thus obtained once again were indicating to the useful nature of the 

method. However, Material M4 showed some incompatibilities in data fitting 

results as well. 

 Finally, exact exponent was searched for to use in exponential function in each 

material case. Certain type of lest squire method was used here. In this search, it 

was found out that most of the time exponent value oscillate as around 0.35. When 

method used with all material data together, value came to stand at 0.355 exact 

figure. 
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CONTRIBUTION TO SCIENCE AND PRACTICE  

This thesis aimed at providing a solution to a problematic situation that arises 

when there is not sufficient data sets available for data fitting in the mechanical 

characterization of hyperelestic materials. By providing secondary data set which 

resembles biaxial data, the problem could be overcome with reasonably accurate 

results. Such solution of the problem, contributed to the science in following 

manner. 

 Method could improve the results by eliminating erroneous practice of 

single data set fitting. 

 This is a cost-effective method of mechanical characterization of 

hyperelestic materials. 

 The method reduces aggregate time consumed for characterization by way 

of additional experiments. 

 Eliminate inaccuracies attached with biaxial testing as method nullifies the 

requirement for additional tests.  

 The method open up a new area of research to find extra pure shear data 

set with similar type of method 

 At the same time, method could be further developed to accommodate 

many more materials. 
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